[1] LI C, CANTAREL A, GONG X. Influence of structural parameters at microscale on the fiber reinforcement[J]. Journal of Composite Materials, 2018, 53(7): 863-872. [2] 范玉青, 张丽华. 超大型复合材料机体部件应用技术的新进展: 飞机制造技术的新跨越[J]. 航空学报, 2009(3): 534-543. [3] 王奕首, 李煜坤, 吴迪, 等. 复合材料液体成型固化监测技术研究进展[J]. 航空制造技术, 2017(19): 50-59. [4] OKONKWO K, SIMACEK P, ADVANI S G, et al. Characterization of 3D fiber preform permeability tensor in radial flow using an inverse algorithm based on sensors and simulation[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1283-1292. [5] HWANG W R, ADVANI S G, WALSH S. Direct simulations of particle deposition and filtration in dual-scale porous media[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1344-1352. [6] JI J, LIU T, FU C, et al. Numerical simulation of the carbon fiber composite material front floor of car by PAM-RTM[C]//2015 International Power, Electronics and Materials Engineering Conference. 2015. [7] 魏俊伟, 张兴刚, 郭万涛. 典型夹芯结构复合材料VARI工艺成型仿真计算研究[J]. 材料开发与应用, 2013, 28(5): 71-78. [8] OLIVEIRA I R, AMICO S C, SOUZA J A, et al. Numerical analysis of the resin transfer molding process via PAM-RTM software[J]. Defect and Diffusion Forum, 2015, 365: 88-93. [9] 姜茂川, 赵龙, 刘强, 等. VARI液体成型工艺制备复合材料帽形泡沫夹芯构件的工艺模拟及验证[J]. 复合材料学报, 2013, 30(s1): 266-272. [10] 李晨, 黄甲, 陈程, 等. 先进复合材料VARTM工艺树脂流动数值模拟研究[J]. 航空制造技术, 2020, 63(5): 68-73. [11] ZHAO Z, DANG H, ZHANG C, et al. A multi-scale modeling framework for impact damage simulation of triaxially braided composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 113-125. [12] ZHANG C, LI N, WANG W, et al. Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model[J]. Composite Structures, 2015, 125: 104-116. [13] GEBART B R. Permeability of unidirectional reinforcements for RTM[J]. Journal of Composite Materials, 1992, 26(8): 1100-1133. [14] CARMAN P C. Fluid flow through granular beds[J]. Chemical Engineering Research and Design, 1997, 75 (Supplement): S32-S48. [15] CHEN X, PAPATHANASIOU T D. Micro-scale modeling of axial flow through unidirectional disordered fiber arrays[J]. Composites Science and Technology, 2007, 67(7): 1286-1293. [16] CHEN X, PAPATHANASIOU T D. The transverse permeability of disordered fiber arrays: A statistical correlation in terms of the mean nearest interfiber spacing[J]. Transport in Porous Media, 2008, 71(2): 233-251. [17] YANG B, JIN T. Micro-geometry modeling based on monte carlo and permeability prediction of yarn[J]. Polymer Composites, 2014, 22(3): 253-260. [18] DONG S, LIU G, JIA Y, et al. Study on correlation between permeability and structural parameters of non-crimped fabrics[J]. Journal of Composite Materials, 2015, 50(19): 2661-2668. [19] LI C, CANTAREL A, GONG X. A study on resin infusion and effects of reinforcement structure at dual scales by a quasi-realistic numerical simulation method[J]. Journal of Composite Materials, 2020, 002199832092670. [20] LIU Y N, YUAN C, LIU C, et al. Study on the resin infusion process based on automated fiber placement fabricated dry fiber preform[J]. Scientific Reports, 2019, 9(1). [21] SANGANI A S, YAO C. Transport processes in random arrays of cylinders. I. Thermal conduction[J]. Physics of Fluids, 1988, 31(9): 2426-2434. [22] HWANG W R, ADVANI S G. Numerical simulations of Stokes-Brinkman equations for permeability prediction of dual scale fibrous porous media[J]. Physics of Fluids, 2010, 22(11): 113101. [23] BADALASSI V E, CENICEROS H D, BANERJEE S. Computation of multiphase systems with phase field models[J]. Journal of Computational Physics, 2003, 190(2): 371-397. [24] BAYRAMLI E, POWELL R L. The normal (transverse) impregnation of liquids into axially oriented fiber bundles[J]. Journal of Colloid and Interface Science, 1990, 138(2): 346-353. [25] YEAGER M, HWANG W R, ADVANI S G. Prediction of capillary pressure for resin flow between fibers[J]. Composites Science and Technology, 2016, 126: 130-138. |