[1] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: A perspective[J]. Journal of Nuclear Materials, 2014, 448(1): 374-379. [2] 程亮, 张鹏程. 典型事故容错轻水堆燃料包壳候选材料SiCf/SiC复合材料和Mo合金的研究进展[J]. 材料导报, 2018, 32(13): 2161-2166. [3] DECK C P, JACOBSEN G M, SHEEDER J, et al. Characterization of SiC-SiC composites for accident tolerant fuel cladding[J]. Journal of Nuclear Materials, 2015, 466: 667-681. [4] NOZAWA T, HINOKI T, et al. Recent advances and issues in development of silicon carbide composites for fusion applications[J]. Journal of Nuclear Materials, 2009, 622: 386-88. [5] STEMPIEN J D, CARPENTER D, KOHSE G, et al. Characteristics of composite silicon carbide fuel cladding after irradiation under simulated PWR conditions[J]. Nuclear Technology, 2013, 183(1): 13-29. [6] TERRANI K A, YANG Y, KIM Y J, et al. Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation[J]. Journal of Nuclear Materials, 2015, 465: 488-498. [7] PINT B A, TERRANI K A, BRADY M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J]. Journal of Nuclear Materials, 2013, 440(1-3): 420-427. [8] CHENG T, KEISER J R, BRADY M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J]. Journal of Nuclear Materials, 2012, 427(1-3): 396-400. [9] KATOH Y, SNEAD L L, SZLUFARSKA I, et al. Radiation effects in SiC for nuclear structural applications[J]. Current Opinion in Solid State and Materials Science, 2012, 16(3): 143-152. [10] KIM W, HWANG H S, PARK J Y, et al. Corrosion behaviors of sintered and chemically vapor deposited silicon carbide ceramics in water at 360 ℃[J]. Journal of Materials Science Letters, 2003, 22(8): 581-584. [11] KIM W, KIM D, PARK J Y, et al. Fabrication and material issues for the application of SiC composites to LWR fuel cladding[J]. Nuclear Engineering and Technology, 2013, 45(4): 565-572. [12] FEINROTH H, ALES M, BARRINGER E, et al. Mechanical strength of CTP triplex SiC fuel clad tubes after irradiation in MIT research reactor under PWR coolant conditions[J]. Ceramic Engineering and Science Proceedings, 2009, 30: 47-55. [13] CHOU B J, KIM D Y. Growth of silicon carbide by chemical vapor deposition[J]. Journal of Materials Science Letters, 1991, 10: 860-862. [14] 葛毅成,彭可,杨琳, 等. C/C-Cu复合材料表面等离子喷涂钨涂层[J]. 粉末冶金材料科学与工程, 2010, 15(02): 136-140. [15] ZHAO J, WANG G, GUO Q G, et al. Microstructure and property of SiC coating for carbon materials[J]. Fusion Engineering and Design, 2007, 82(7): 363-368. [16] 黄敏, 李克智, 李贺军, 等. 包埋工艺参数对碳/碳复合材料表面SiC涂层致密性的影响[J]. 机械工程材料, 2009, 33(3): 5-7, 11. [17] HUANG J F, ZENG X R, LI H J, et al. Influence of the preparation temperature on the phase, microstructure and anti-oxidation property of a SiC coating for C/C composites[J]. Carbon, 2004, 42(8/9): 1517-1521. [18] YANG J, YU J, HUANG Y, et al. Recent developments in gelcasting of ceramics[J]. Journal of the European Ceramic Society, 2011, 31(14): 2569-2591. [19] KATOH Y, OZAWA K, SHIH C, et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects[J]. Journal of Nuclear Materials, 2014, 448(1-3): 448-476. [20] 杨鑫, 黄启忠, 邹艳红, 等. 化学气相反应法制备不同碳基体表面SiC涂层组织结构分析[J]. 化学学报, 2008, 66(24): 2742-2748. [21] NIU Y, ZHENG X, DING C, et al. Microstructure characteristics of silicon carbide coatings fabricated on C/C composites by plasma spraying technology[J]. Ceramics International, 2011, 37(5): 1675-1680. [22] KIM W, HWANG H S, PARK J Y, et al. Corrosion behavior of reaction-bonded silicon carbide ceramics in high-temperature water[J]. Journal of Materials Science Letters, 2002, 21(9): 733-735. [23] BARRINGER E, FAIZTOMPKINS Z, FEINROTH H. Corrosion of CVD silicon carbide in 500 ℃ supercritical water[J]. Journal of the American Ceramic Society, 2007, 90(1): 315-318. [24] HIRAYAMA H, KAWAKUBO T, GOTO A, et al. Corrosion behavior of silicon carbide in 290 ℃ water[J]. Journal of the American Ceramic Society, 1989, 72(11): 2049-2053. [25] OPILA E J. Variation of the oxidation rate of silicon carbide with water-vapor pressure[J]. Journal of the American Ceramic Society, 1999, 82(3): 625-636. [26] 刘俊凯, 张新虎, 恽迪, 等. 事故容错燃料包壳候选材料的研究现状及展望[J]. 材料导报, 2018, 32(11): 1757-1778. [27] KIM D, LEE H G, JI Y P, et al. Effect of dissolved hydrogen on the corrosion behavior of chemically vapor deposited SiC in a simulated pressurized water reactor environment[J]. Corrosion Science, 2015, 98: 335-342. [28] KIM D, LEE H J, JANG C, et al. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes[J]. Journal of Nuclear Materials, 2017, 492: 6-13. [29] HENAGER C H, SCHEMERKOHRN A L, PITMAN S G, et al. Pitting corrosion in CVD SiC at 300 ℃ in deoxygenated high-purity water[J]. Journal of Nuclear Materials. 2008, 378(1): 9-16. [30] 田民波. 薄膜技术基础[M]. 北京: 清华大学出版社, 2006. |