[1] BAKER A. Bonded composite repair of fatigue-cracked primary aircraft structure[J]. Composite Structures, 1999, 47(1): 431-443. [2] 穆志韬, 牛勇, 李旭东, 等. 复合环境下金属损伤复合材料胶接修复结构疲劳寿命试验研究[J]. 玻璃钢/复合材料, 2015(12): 18-22. [3] KIM M, KIM H, LEE W. Repair of aircraft structures using composite patches bonded through induction heating[J]. Advanced Composite Materials, 2015, 24(4): 307-323. [4] ALBEDAH A, KHAN S M A, BENYAHIA F, et al. Effect of load amplitude change on the fatigue life of cracked Al plate repaired with composite patch[J]. International Journal of Fatigue, 2016, 88: 1-9. [5] 杨龙英. 修补固化方式对树脂基复合材料修补性能的影响研究[J]. 塑料工业, 2015, 43(9): 83-86. [6] 文友谊, 文琼华, 李帆, 等. 碳纤维增强树脂基复合材料微波固化技术[J]. 航空制造技术, 2015(s1): 61-64. [7] 杨云仙, 刘军, 周敏, 等. 复合材料构件热压罐成型温度场研究[J]. 航空制造技术, 2016(15): 82-86. [8] 苏鹏, 崔文峰. 先进复合材料热压罐成型技术[J]. 现代制造技术与装备, 2016(11): 165-166. [9] 郑立胜, 李远才, 代永朝. 环氧复合材料用微波固化技术及其展望[J]. 玻璃钢/复合材料, 2006(3): 53-56. [10] 刘博. 环氧树脂复合材料紫外固化工艺及修补技术研究[D]. 南京: 南京航空航天大学, 2014. [11] MÜLLER B, PALARDY G, TEIXEIRA DE FREITAS S, et al. Out-of-autoclave manufacturing of GLARE panels using resistance heating[J]. Journal of Composite Materials, 2017, 52(12): 1661-1675. [12] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430): 603-605. [13] CHIEN A, CHO S, JOSHI Y, et al. Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers[J]. Polymer, 2014, 55(26): 6896-6905. [14] NGUYEN N, HAO A, PARK J G, et al. In situ curing and out-of-autoclave of interply carbon fiber/carbon nanotube buckypaper hybrid composites using electrical current[J]. Advanced Engineering Materials, 2016, 18(11): 1906-1912. [15] 徐小魁, 张远, 蒋瑾, 等. 碳纳米管薄膜电加热固化复合材料研究[J]. 炭素技术, 2017, 36(6): 18-23. [16] LIU S, LI Y, XIAO S, et al. Self-resistive electrical heating for rapid repairing of carbon fiber reinforced composite parts[J]. Journal of Reinforced Plastics and Composites, 2019, 38(11): 495-505. |