[1] 益小苏. 先进树脂转移模塑树脂基复合材料技术研究进展[C]//中国力学学会. 第十五届全国复合材料学术会议论文集(上册). 国防工业出版社, 2008: 6. [2] 赵安安, 杨文凯, 于飞, 等. 大型高性能复合材料构件RTM工艺进展[J]. 南京航空航天大学学报, 2020, 52(1): 39-47. [3] 闫丽, 安学锋. “离位”增韧ES-U3160/5284复合材料的制备及性能研究[J]. 化工新型材料, 2019, 47(4): 167-170. [4] VAN VELTHEM P, BALLOUT W, DAOUST D, et al. Influence of thermoplastic diffusion on morphology gradient and on delamination toughness of RTM-manufactured composites[J]. Composites: Part A, 2015, 72: 175-183. [5] 孙建生. 高温环氧树脂“离位”RTM工艺及“离位”增韧技术研究[D]. 北京: 北京航空材料研究院, 2007. [6] 刘志真, 李宏运, 邢军, 等. RTM聚酰亚胺复合材料“离位”增韧技术研究[J]. 航空材料学报, 2008, 28(6): 72-77. [7] 益小苏. 航空复合材料科学与技术[M]. 北京: 航空工业出版社, 2013. [8] 王婧, 薛忠民, 李刚, 等. 不同纳米核壳粒子增韧环氧树脂体系的性能及机理研究[J]. 玻璃钢/复合材料, 2018(7): 5-11. [9] WICHMANN M H G, SUMFLETH J, GOJNY F H, et al. Glass-fibre-reinforced composites with enhanced mechanical and electrical properties-Benefits and limitations of a nanoparticle modified matrix[J]. Engineering Fracture Mechanics, 2006, 73(16): 2346-2359. [10] NASH N H, YOUNG T M, MCGRAIL P T, et al. Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites-A review[J]. Materials and Design, 2015, 85: 582-597. [11] WEI Y. Engineered cross-linked thermoplastic particles for interlaminar toughening: US 8846818 B2[P]. 2014. [12] BAHRAMI A, CORDENIER F, VAN VELTHEM P, et al. Synergistic local toughening of high performance epoxy-matrix composites using blended block copolymer-thermoplastic thin films[J]. Composites: Part A, 2016, 91: 398-405. [13] WONG D W Y, ZHANG H, BILOTTI E, et al. Interlaminar toughening of woven fabric carbon/epoxy composite laminates using hybrid aramid/phenoxy interleaves[J]. Composites: Part A, 2017, 101: 151-159. [14] QUAN D, DEEGAN B, ALDERLIESTEN R, et al. The influence of interlayer/epoxy adhesion on the mode-Ⅰ and mode-Ⅱ fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veils[J]. Materials and Design, 2020, 192: 1-10. |