[1] 熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展[J]. 宇航学报, 2020, 41(6): 749. [2] WEI X, XIONG J, WANG J, et al. New advances in fiber-reinforced composite honeycomb materials[J]. Science China Technological Sciences, 2020, 63(8): 1348-1370. [3] 吴林志, 熊健, 马力, 等. 新型复合材料点阵结构的研究进展[J]. 力学进展, 2012, 42(1): 1-27. [4] XIONG J, DU Y, MOUSANEZHAD D, et al. Sandwich structures with prismatic and foam cores: A review[J]. Advanced Engineering Materials, 2019, 21(1): 1800036. [5] 王凯, 熊晨曦, 贺强. 超轻复合材料机翼结构设计及成型技术研究[J]. 玻璃钢/复合材料, 2020(4): 72-78. [6] 朱永明, 杨春霞, 吴东. 夹层结构天线罩的低成本制造工艺[J]. 玻璃钢/复合材料, 2020(5): 90-94. [7] 樊子砚, 方海, 庄勇, 等. 格构腹板增强泡沫夹芯复合材料准静态压缩吸能试验[J]. 玻璃钢/复合材料, 2017(1): 5-10. [8] 孙春方, 薛元德, 胡培. 复合材料泡沫夹层结构力学性能与试验方法[J]. 玻璃钢/复合材料, 2005(2): 3-6. [9] ZENKERT D. The handbook of sandwich construction[M]. Engineering Materials Advisory Services, 1997. [10] EVANS A G. Lightweight materials and structures[J]. MRS bulletin, 2001, 26(10): 790-797. [11] 吴林志, 熊健, 马力, 等. 轻质夹层多功能结构一体化设计[J]. 力学与实践, 2012, 34(4): 8-18. [12] 杨雯, 霍浩亮, 李海波, 等. 航天多功能热控材料及结构研究进展[J]. 强度与环境, 2020, 47(2): 1-12. [13] LU T J, VALDEVIT L, EVANS A G. Active cooling by metallic sandwich structures with periodic cores[J]. Progress in Materials Science, 2005, 50(7): 789-815. [14] KANG K J. Wire-woven cellular metals: The present and future[J]. Progress in Materials Science, 2015, 69: 213-307. [15] HAN B, ZHANG Z J, ZHANG Q C, et al. Recent advances in hybrid lattice-cored sandwiches for enhanced multifunctional performance[J]. Extreme Mechanics Letters, 2017, 10: 58-69. [16] EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science, 2001, 46(3-4): 309-327. [17] BURLAYENKO V N, SADOWSKI T. Influence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich plates[J]. International Journal of Non-Linear Mechanics, 2010, 45(10): 959-968. [18] CHEN Y, ZHU X, ZHU Z. Experimental studies of composite sandwich columns with face/core debond under axial compression[C]//MATEC Web of Conferences. EDP Sciences, 2017: 07026. [19] STANLEY L E, ADAMS D O. Development and evaluation of stitched sandwich panels: CR-211025[R]. Washington: NASA, 2001. [20] XIA F, WU X. Study on impact properties of through-thickness stitched foam sandwich composites[J]. Composite Structures, 2010, 92(2): 412-421. [21] KIM J H, LEE Y S, PARK B J, et al. Evaluation of durability and strength of stitched foam-cored sandwich structures[J]. Composite Structures, 1999, 47(1-4): 543-550. [22] LASCOUP B, ABOURA Z, KHELLIL K, et al. On the mechanical effect of stitch addition in sandwich panel[J]. Composites Science and Technology, 2006, 66(10): 1385-1398. [23] 黄志超, 程梁. 未缝合与缝合玻纤泡沫夹层复合板弯曲性能研究[J]. 塑料工业, 2018(8): 89-94. [24] LIU C, ZHOU G, LU F. Tensile properties and failure mechanism of 3D woven hollow integrated sandwich composites[J]. Applied Composite Materials, 2017, 24(5): 1151-1163. [25] CORIGLIANO A, RIZZI E, PAPA E. Experimental characterization and numerical simulations of a syntactic-foam/glass-fibre composite sandwich[J]. Composites Science and Technology, 2000, 60(11): 2169-2180. [26] 潘利剑, 刘卫平, 陈萍, 等. 缝合泡沫夹层复合材料的滚筒剥离性能[J]. 玻璃钢/复合材料, 2013(3): 39-42. [27] 仇艳慧, 徐庆林, 尹昌平, 等. 缝合增强泡沫夹芯结构复合材料力学性能研究[J]. 玻璃钢/复合材料, 2017(10): 46-52. [28] 曾竟成, 魏凯耀, 杜刚, 等. 整体缝合夹芯结构复合材料力学性能[J]. 国防科技大学学报, 2016(1): 9-14. [29] 刘华峰, 赵凯辉, 王佩艳, 等. 缝合复合材料泡沫夹层结构侧压剪切力学性能试验研究[J]. 郑州大学学报: 工学版, 2011, 32(4): 18-21. [30] 杨慧, 刘兴宇, 张弛. 缝合复合材料泡沫夹层结构层间剪切性能研究[J]. 应用力学学报, 2016, 33(1): 105-109. [31] 赖家美, 鄢冬冬, 饶欣远, 等. 缝合泡沫夹层结构复合材料三点弯曲性能研究[J]. 工程塑料应用, 2016(2): 101-105. [32] AI S, MAO Y, PEI Y, et al. Effect of stitching angle on mechanical properties of stitched sandwich panels[J]. Materials & Design, 2013, 50: 817-824. [33] WANG P, LEI Y, YUE Z. Experimental and numerical evaluation of the flexural properties of stitched foam core sandwich structure[J]. Composite Structures, 2013, 100: 243-248. [34] LASCOUP B, ABOURA Z, KHELLILl K, et al. Impact response of three-dimensional stitched sandwich composite[J]. Composite Structures, 2010, 92(2): 347-353. [35] HAN F, YAN Y, MA J. Experimental study and progressive failure analysis of stitched foam-core sandwich composites subjected to low-velocity impact[J]. Polymer Composites, 2018, 39(3): 624-635. [36] TEKALUR S A, BOGDANOVICH A E, SHUKLA A. Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core[J]. Composites Science and Technology, 2009, 69(6): 736-753. [37] DELL'ANNO G, TREIBER J W G, PARTRIDGE I K. Manufacturing of composite parts reinforced through-thickness by tufting[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37: 262-272. [38] VERMA K K, PADMAKARA G, GADDIKERI K M, et al. The key role of thread and needle selection towards 'through-thickness reinforcement' in tufted carbon fiber-epoxy laminates[J]. Composites Part B: Engineering, 2019, 174: 106970. [39] SHEN H, WANG P, LEGRAND X, et al. Characterisation and optimisation of wrinkling during the forming of tufted three-dimensional composite preforms[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105651. [40] DELL'ANNO G, CARTIE D D, PARTRIDGE I K, et al. Exploring mechanical property balance in tufted carbon fabric/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(11): 2366-2373. [41] BLOK L G, KRATZ J, LUKASZEWICZ D, et al. Improvement of the in-plane crushing response of CFRP sandwich panels by through-thickness reinforcements[J]. Composite Structures, 2017, 161: 15-22. [42] BORTOLUZZI D B, GOMES G F, HIRAYAMA D, et al. Development of a 3D reinforcement by tufting in carbon fiber/epoxy composites[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5-8): 1593-1605. [43] HENAO A, CARRERA M, MIRAVETE A, et al. Mechanical performance of through-thickness tufted sandwich structures[J]. Composite Structures, 2010, 92(9): 2052-2059. [44] JUDAWISASTRA H, IVENS J, VERPOEST I. The fatigue behaviour and damage development of 3D woven sandwich composites[J]. Composite Structures, 1998, 43(1): 35-45. [45] 朱洪艳, 南力强, 云庆文, 等. Z-pin增强复合材料结构研究综述[C]// 中国航空学会. 探索 创新 交流(第7集)——第七届中国航空学会青年科技论坛文集(上册). 北京: 中国航空学会动力分会, 2016: 83-88. [46] MOURITZ A P. Review of Z-pinned composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(12): 2383-2397. [47] CHOI I H, AHN S M, YEOM C H, et al. Manufacturing of Z-pinned composite laminates[C]//17th International Conference on Composite Materials. Edinburgh: 2009: 27. [48] 张向阳. Z-pin 增强复合材料加筋蒙皮结构力学性能及损伤机理研究[D]. 南京: 南京航空航天大学, 2017. [49] O'BRIEN T K, PARIS I L. Exploratory investigation of failure mechanisms in transition regions between solid laminates and X-cor truss sandwich[J]. Composite Structures, 2002, 57(1-4): 189-204. [50] ZHENG Y, XIAO J, DUAN M, et al. Experimental study of partially-cured Z-pins reinforced foam core composites: K-Cor sandwich structures[J]. Chinese Journal of Aeronautics, 2014, 27(1): 153-159. [51] MARASCO A I, CARTIE D D R, PARTRIDGE I K, et al. Mechanical properties balance in novel Z-pinned sandwich panels: Out-of-plane properties[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(2): 295-302. [52] RICE M C, FLEISCHER C A, ZUPAN M. Study on the collapse of pin-reinforced foam sandwich panel cores[J]. Experimental Mechanics, 2006, 46(2): 197-204. [53] CARTIE D D, FLECK N A. The effect of pin reinforcement upon the through-thickness compressive strength of foam-cored sandwich panels[J]. Composites Science and Technology, 2003, 63(16): 2401-2409. [54] WANG B, WU L Z, JIN X, et al. Experimental investigation of 3D sandwich structure with core reinforced by composite columns[J]. Materials and Design, 2010, 31(1): 158-165. [55] WANG B, WU L Z, MA L, et al. Low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures[J]. Composites Part B: Engineering, 2011, 42(4): 891-897. [56] 王兵, 冯吉才, 李庆飞, 等. 纤维柱增强泡沫夹芯的等效力学性能研究[J]. 哈尔滨功业大学学报, 2012, 44(3): 29-33. [57] ZHOU J, GUAN Z W, CANTWELL W J, et al. The energy-absorbing behaviour of foam cores reinforced with composite rods[J]. Composite Structures, 2014, 116: 346-356. [58] DU L, JIAO G. Indentation study of Z-pin reinforced polymer foam core sandwich structures[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6-7): 822-829. |