[1] KOIZUMI M. FGM activities in Japan[J]. Composites. Part B, Engineering, 1997, 28(1-2): 1-4. [2] NAEBE M, SHIRVANIMOGHADDAM K. Functionally graded materials: A review of fabrication and properties[J]. Applied Materials Today, 2016, 5: 223-245. [3] GUPTA A, TALHA M. Recent development in modeling and analysis of functionally graded materials and structures[J]. Progress in Aerospace Sciences, 2015, 79: 1-14. [4] AVCI O, ABDELJABER O, KIRANYAZ S, et al. A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and deep learning applications[J]. Mechanical Systems and Signal Processing, 2021, 147: 107077. [5] LYAPIN A, SHATILOV Y. Vibration-based damage detection of the reinforced concrete column[J]. Procedia Engineering, 2016, 150: 1867-1871. [6] WICKRAMASINGHE W R, THAMBIRATNAM D P, CHAN T H T, et al. Vibration characteristics and damage detection in a suspension bridge[J]. Journal of Sound & Vibration, 2016, 254-274. [7] ALVANDI A, CREMONA C. Assessment of vibration-based damage identification techniques[J]. Journal of Sound and Vibration, 2006, 292(1-2): 179-202. [8] CERRI M N, VESTRONI F. Use of frequency change for damage identification in reinforced concrete beams[J]. Journal of Vibration and Control, 2003, 9(3-4): 475-491. [9] XIA Y, HAO H. Statistical damage identification of structures with frequency changes[J]. Journal of Sound and Vibration, 2003, 263(4): 853-870. [10] RALBOVSKY M, DEIX S, FLESCH R. Frequency changes in frequency-based damage identification[J]. Structure and Infrastructure Engineering, 2010, 6(5): 611-619. [11] 史治宇, 吕令毅. 由模态应变能法诊断结构破损的实验研究[J]. 东南大学学报(自然科学版), 1999, 29(2): 134. [12] NICK H, AZIMINEJAD A, HOSSEINI M H, et al. Damage identification in steel girder bridges using modal strain energy-based damage index method and artificial neural network-ScienceDirect[J]. Engineering Failure Analysis, 2020, 119. [13] 黄立新, 岳世燕, 胡中明, 等. 功能梯度经典梁损伤识别模态应变能变化率法的抗噪音性能研究[J]. 玻璃钢/复合材料, 2016(2): 35-39. [14] 黄立新, 杨真真, 赵文举. 基于模态应变能变化率法的Euler-Bernoulli功能梯度梁的损伤识别[J]. 玻璃钢/复合材料, 2015(8): 14-17. [15] 岳世燕. 基于模态应变能变化率法功能梯度Timoshenko梁结构损伤识别的研究[D]. 南宁: 广西大学, 2016. [16] 沈庆阳. 基于实验模态分析的结构损伤识别的研究[D]. 南京: 南京航空航天大学, 2012. [17] HUANG M S, LI X F, LEI Y Z, et al. Structural damage identification based on modal frequency strain energy assurance criterion and flexibility using enhanced Moth-Flame optimization[J]. Structures (Oxford), 2020, 28: 1119-1136. [18] SIMSKE M, KOCATÜRK T. Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load[J]. Composite Structures, 2009, 90(4): 465-473. [19] NIKBAKHT S, KAMARIAN S, SHAKERI M. A review on optimization of composite structures Part Ⅱ: Functionally graded materials[J]. Composite Structures, 2019, 214(APR.): 83-102. [20] ALSHORBAGY E, ELTAHER M A, MAHMOUD F F. Free vibration characteristics of a functionally graded beam by finite element method[J]. Applied Mathematical Modelling, 2011, 35(1): 412-425. [21] SHI Z Y, LAW S S, ZHANG L M. Structural damage localization from modal strain energy change[J]. Journal of Sound and Vibration, 1998, 218(5): 825-844. [22] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 4版. 北京: 高等教育出版社, 2008. |