[1] JIANG P, LV S W, WANG Y, et al. Investigation on direct shear and energy dissipation characteristics of iron tailings powder reinforced by polypropylene fiber[J]. Applied Sciences, 2019, 9(23): 5098. [2] JIANG P, QIU L Q, LI N, et al. Shearing performance of lime-reinforced iron tailing powder based on energy dissipation[J]. Advances in Civil Engineering, 2018, 2018(PT.9): 1-8. [3] KURANCHIE F A, SHUKLA S K, HABIBI D. Utilisation of iron ore mine tailings for the production of geopolymer bricks[J]. International Journal of Mining Reclamation and Environment, 2016, 30(2): 1-23. [4] SHWETHA R A. Study on utilization of iron ore tailings as fine aggregates and GGBS as partial substitute in concrete[J]. International Journal of Engineering Research & Technology (IJERT), 2017, 6: 1068-1071. [5] BASTOS L A C, SILVA G C, MENDES J C, et al. Using iron ore tailings from tailing dams as road material[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016102. [6] OSINUBI K J, EBEREMU A O, YOHANNA P, et al. Reliability stimate of the compaction characteristics of iron ore tailings treated tropical black clay as road pavement sub-base material[M]. Geo-Chicago: 2016: 855-864. [7] FILHO J N S A, DA S S N, SILVA G C, et al. Technical and environmental feasibility of interlocking concrete pavers with iron ore tailings from tailings dams[J]. Journal of Materials in Civil Engineering, 2017, 29(9): 4017104. [8] 刘晶磊, 王一峰, 刘桓, 等. 路用水泥改良铁尾矿的无侧限抗压强度表征参数[J]. 科学技术与工程, 2018, 018(18): 275-281. [9] LIANG S, LIN H, ZHOU S, et al. Experimental research on polypropylene fiber and cement reinforced Nansha soft soil in Guangzhou[J]. Industrial Construction, 2018, 48(7): 87-90. [10] 阮波, 彭学先, 马超, 等. 玻璃纤维加筋石灰土无侧限抗压强度试验研究[J]. 铁道科学与工程学报, 2018, 15(9): 2246-2251. [11] 李丽华, 万畅, 梅利芳, 等. 玻璃纤维水泥土无侧限抗压强度特性研究[J]. 武汉大学学报: 工学版, 2018, 051(3): 252-256. [12] 高术森. 聚丙烯纤维对固化海涂淤泥物理力学性能的影响研究[D]. 杭州: 浙江大学, 2012. [13] 卢宏建, 梁鹏, 甘德清, 等. 充填料浆流动沉降规律与充填体力学特性研究[J]. 岩土力学, 2017(s1): 269-276. [14] JAMSAWANG P, SUANSOMJEEN T, SUKONTASUKKUL P, et al. Comparative flexural performance of compacted cement-fiber-sand [J]. Geotextiles and Geomembranes, 2018, 46(4): 414-425. [15] NEJATI H R, MOOSAVI S A. A new brittleness index for estimation of rock fracture toughness[J]. Journal of Mining and Environment, 2017, 8(1): 83-91. [16] 谷川, 王军, 张婷婷, 等. 应力路径对饱和软黏土割线模量的影响[J]. 岩土力学, 2013, 34(12): 3394-3402. [17] MUNOZ H, TAHERI A, CHANDA E K. Fracture energy-based brittleness index development and brittleness quantification by pre-peak strength parameters in rock uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(12): 4587-4606. [18] CAO S, YILMAZ E, SONG W. Fiber type effect on strength, toughness and microstructure of early age cemented tailings backfill[J]. Construction and Building Materials, 2019, 223: 44-54. [19] 王海龙, 罗月静, 彭光宇, 等. 掺合料对纤维增强水泥基材料拉伸性能的影响[J]. 西南交通大学学报, 2017, 52(1): 61-68. |