[1] 刘伟庆, 方海, 方园. 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40(4): 1-16. [2] LIU T, FENG P, WU Y, et al. Developing an innovative curved-pultruded large-scale GFRP arch beam[J]. Composite Structures, 2021, 256: 113111. [3] 郑益飞, 申明霞, 段鹏鹏, 等. 含MWCNTs玻璃纤维增强复合材料的力学和界面性能的研究[J]. 玻璃钢/复合材料, 2019(12): 83-88. [4] WITHERS G J, YU Y, KHABASHESKU V N, et al. Improved mechanical properties of an epoxy glass-fiber composite reinforced with surface organomodified nanoclays[J]. Composites Part B: Engineering, 2015, 72: 175-182. [5] ZENG S H, SHEN M X, DUAN P P, et al. Effect of silane hydrolysis on the interfacial adhesion of carbon nanotubes/glass fiber fabric-reinforced multiscale composites[J]. Textile Research Journal, 2018, 88(4): 379-391. [6] QIN W, VAUTARD F, ASKELAND P, et al. Modifying the carbon fiber-epoxy matrix interphase with silicon dioxide nanoparticles[J]. RSC Advances, 2015, 5(4): 2457-2465. [7] 李君, 矫维成, 闫美玲, 等. 碳纳米材料接枝碳纤维的复合材料界面增效研究进展[J]. 玻璃钢/复合材料, 2018(1): 108-113. [8] ANAND A, GHOSH S K, FULMALI A O, et al. Enhanced barrier, mechanical and viscoelastic properties of graphene oxide embedded glass fibre/epoxy composite for marine applications[J]. Construction and Building Materials, 2021, 268: 121784. [9] 夏雪, 梅启林, 王聪, 等. 石墨烯纳米片对碳纤维/聚丙烯复合材料导热及力学性能的影响[J]. 玻璃钢/复合材料, 2019(1): 11-14. [10] JIA J, DU X, CHEN C, et al. 3D network graphene interlayer for excellent interlaminar toughness and strength in fiber reinforced composites[J]. Carbon, 2015, 95: 978-986. [11] MAHMOOD H, VANZETTI L, BERSANI M, et al. Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 112-123. [12] YAVARI F, RAFIEE M A, RAFIEE J, et al. Dramatic increase in fatigue life in hierarchical graphene composites[J]. ACS Applied Materials and Interfaces, 2010, 2(10): 2738-2743. [13] YIN X, BAO J. Glass fiber coated with graphene constructed through electrostatic self-assembly and its application in poly(lactic acid) composite[J]. Journal of Applied Polymer Science, 2016, 133(15): 1-9. [14] KAMAR N T, HOSSAIN M M, KHOMENKO A, et al. Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 82-92. [15] ZENG S, SHEN M, XUE Y, et al. A novel strategy to reinforce glass fiber fabric/epoxy composites via modifying fibers with self-assembled multi-walled carbon nanotubes-montmorillonite[J]. Polymer Composites, 2020, 41(2): 522-534. [16] CHEN J, ZHAO D, JIN X, et al. Modifying glass fibers with graphene oxide: Towards high-performance polymer composites[J]. Composites Science and Technology, 2014, 97: 41-45. [17] 王柏臣, 周高飞, 蔡安宁, 等. 基于碳纳米管复合纤维预制体的复合材料结构和性能[J]. 固体火箭技术, 2014, 37(4): 578-582. [18] SIDDIQUI N A, LI E L, SHAM M L, et al. Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating: Effects of CNT morphology and dispersion state[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(4): 539-548. [19] LUO S, CAO J, SUN W. Evaluation of Kraft lignin as natural compatibilizer in wood flour/polypropylene composites[J]. Polymer Composites, 2017, 38(11): 2387-2394. [20] GAO H, FAN Y, ZENG S, et al. Enhanced interfacial adhesion in glass fiber fabric/epoxy composites employing fiber surface treatment with aminosilane-functionalized graphene oxide[J]. Textile Research Journal, 2021, 91(7-8): 790-801. |