[1] 徐瑀童, 左洪福, 陆晓华, 等. 复合材料低速冲击损伤评估数值分析与试验研究[J]. 振动与冲击, 2019, 38(3): 149-155. [2] 益小苏. 先进树脂基复合材料高性能化理论与实践[M]. 北京: 国防工业出版社, 2011. [3] LIU B, XU F, QIN J, et al. Study on impact damage mechanisms and TAI capacity for the composite scarf repair of the primary load-bearing level[J]. Composite Structures, 2017, 181(12): 183-193. [4] PANETTIERI E, FANTERIA D, MONTEMURRO M, et al. Low-velocity impact tests on carbon/epoxy composite laminates: A benchmark study[J]. Composites Part B Engineering, 2016, 107(12): 9-21. [5] 苑博, 税国双, 汪越胜. 非线性超声混频检测技术在无损检测中的研究进展[J]. 机械工程学报, 2019, 55(16): 33-46. [6] MAO H L, ZHANG Y H, LI X X, et al. Fatigue crack detection and fatigue damage imaging using the non-collinear transverse wave mixing technique[J]. Nondestructive Testing And Evaluation, 2018(10): 1-13. [7] ZHAO Y X, XU Y M, CHEN Z M, et al. Detection and characterization of randomly distributed micro-cracks in elastic solids by one-way collinear mixing method[J]. Journal of Nondestructive Evaluation, 2018, 37(3): 47. [8] LV H, JIAO J, WU B, et al. Evaluation of fatigue crack orientation using non-collinear shear wave mixing method[J]. Journal of Nondestructive Evaluation, 2018, 37(4): 1-16. [9] 焦敬品, 樊仲祥, 吴斌, 等. 闭合裂纹非共线混频超声检测试验研究[J]. 声学学报, 2017, 42(2): 205-213. [10] 焦敬品, 孙俊俊, 吴斌, 等. 结构微裂纹混频非线性超声检测方法研究[J]. 声学学报, 2013, 38(6): 648-656. [11] 杨斌, 史开元, 袁廷璧, 等. 金属材料微裂纹取向与超声波和频非线性效应[J]. 北京航空航天大学学报, 2019, 45(4): 695-704. [12] 魏勤, 田晓华, 宋广三, 等. 非线性Lamb波混频法及板中微裂纹的检测[J]. 江苏科技大学学报(自然科学版), 2020, 34(2): 110-114. [13] HASANIAN M, LISSENDEN C J. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves[C]//44th Annual Review of Progress in Quantitative Nondestructive Evaluation. 2018. [14] METYA A K, TARAFDER S, BALASUBRAMANIAM K. Nonlinear lamb wave mixing for assessing localized deformation during creep[J]. NDT & E International, 2018, S0963869517306564. [15] 唐博, 孙茂循, 项延训, 等. 超声Lamb波共线混频仿真及实验[C]//西安声学学会、上海市声学学会. 2017年西安-上海声学学会第五届声学学术交流会议论文集. 2017: 25-28. [16] 陈瀚, 邓明晰, 高广健, 等. 界面特性对兰姆波混频效应的影响[J]. 陕西师范大学学报(自然科学版), 2019, 47(6): 1-7. [17] 陈瀚, 高广健, 刘畅, 等. 界面特性对兰姆波非线性效应影响的数值分析[C]//中国声学学会. 2018年全国声学大会论文集. 2018: 24-25. [18] 唐军君, 卢文秀, 李峥, 等. 碳纤维增强复合材料层合板Lamb波衰减特性研究[J]. 振动与冲击, 2016, 35(6): 75-79. [19] 张青松, 铁瑛, 尹振华, 等. 复合材料裂纹参数对Lamb波非线性系数的影响研究[J]. 玻璃钢/复合材料, 2019(6): 17-23. [20] 夏小松, 郑艳萍, 熊勇坚, 等. 复合材料超声导波吸收边界参数研究[J]. 玻璃钢/复合材料, 2019(6): 58-63. [21] ROSE J L, 何存富. 固体中的超声波[M]. 北京: 科学出版社, 2004: 294-296. [22] ZHOU C, HONG M, SU Z, et al. Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network[J]. Smart Materials & Structures, 2013, 22(1): 015018. [23] TIE Y, ZHANG Q, HOU Y, et al. Impact damage assessment in orthotropic CFRP laminates using nonlinear Lamb wave: Experimental and numerical investigations[J]. Composite Structures, 2020, 236: 111869. |