[1] 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 2版. 北京: 清华大学出版社, 2013: 120-121. [2] 冯波, 王晓洁, 惠雪梅. 复合材料Z-pin增强技术研究现状[J]. 玻璃钢/复合材料, 2012(2): 82-85. [3] KIMBERLEY D, CAROLINE B, MAI Y W. Improving the delamination resistance of CFRP by stitching a review[J]. Composites Science and Technology, 1994, 50(12): 305-317. [4] PEGORIN F, PINGKARAWAT K, MOURITZ A P. Comparative study of the mode Ⅰ and mode Ⅱ delamination fatigue properties of z-pinned aircraft composites[J]. Materials and Design, 2015, 65(10): 139-146. [5] VASSILIS K, NIKOLAOS S, STAVROS T. Review of through-the-thickness reinforced z-pinned composites[J]. Journal of composites Science, 2020, 31(5): 1-41. [6] MOURITZ A P. Review of z-pinned laminates and sandwich composites[J]. Composites: Part A, 2020, 139(9): 106-150. [7] BYRD L W, BIRMAN V. Effectiveness of z-pins in preventing delamination of co-cured composite joints on the example of a double cantilever test[J]. Composites Part B, 2004, 37(4-5): 365-378. [8] TIAN F, ZHANG J Q. Three-dimensional numerical simulation of residual stress of Z-Pin composites during curing process[J]. Science of Advanced Materials, 2020, 12(3): 454-460. [9] MOURITZ A P, KOH T M. Re-evaluation of mode Ⅰ bridging traction modelling for z-pinned laminates based on experimental analysis[J]. Composites Part B, 2014(6), 56: 797-807. [10] KNOPP A, SCHARR G. Effect of z-pin surface treatment on delamination and debonding properties of z-pinned composite laminates[J]. Journal of Materials Science, 2014, 49(11): 1674-1683. [11] CHANG P. The mechanical properties and failure mechanisms of z-pinned composites[D]. Melbourne, Australia: Royal Melbourne Institute of Technology, 2006. [12] VAZQUEZ J T, CASTANI'E B, BARRAU J. Multi-level analysis of lowcost z-pinned composite joints: Part 1: single Z-pin behaviour[J]. Composites: Part A, 2011, 42(15): 2070-2081. [13] WARZOK F. Experimental and numerical characterisation of fatigue damage in Z-Pinned composite structures[D]. University of Bristol, 2017. [14] GONG B, WENTING O, MARTINSON N. Minimizing the in-plane damage of Z-pinned composite laminates via a pre-hole pin insertion process[J]. Composites Science and Technology, 2020, 200(13): 1481-1491. [15] CHANG P, MOURITZ A P, COX B N. Flexural properties of z-pinned laminates[J]. Composites: Part A, 2007, 38(7): 244-251. [16] CHANG P, MOURITZ A P, COX B N. Properties and failure mechanisms of z-pinned laminates in monotonic and cyclic tension[J]. Composites Part A, 2006, 37(6): 1501-1513. [17] MOURITZ A P. Review of z-pinned composite laminates[J]. Composites: Part A, 2007, 38: 2383-2397.[18] GRASSI M, ZHANG X, MEO M. Prediction of stiffness and stresses in z-fibre reinforced composite laminates [J]. Composites: Part A, 2002, 33(15): 1653-1664. [19] KNAUPP M, SCHARR G. Manufacturing process and performance of dry carbon fabrics reinforced with rectangular and circular z-pins[J]. Journal of Composite Materials, 2014, 48(17): 2163-2172. [20] American society of testing materials D30 committee. Standard test method for tensile properties of polymer matrix composite materials: D3039M—17[S]. USA: ASTM Press, 2015. [21] American Society of Testing Materials D30 Committee. Standard test method for flexural properties of polymer matrix composite materials: D7264M—15[S]. USA: ASTM Press, 2015. [22] 李成虎, 燕瑛, 崔玉波, 等. Z-pin增强复合材料层合板拉伸性能的试验研究及模拟分析[J]. 航空学报, 2010,31(12): 2435- 2441. [23] MOURITZ A P, CHANG P. Tension fatigue of fibre-dominated and matrix-dominated laminates reinforced with z-pins[J]. International Journal of Fatigue, 2010, 32(11): 650-658. [24] SWEETING D, RODNEY S, THOMSON. The effect of thermal mismatch on Z-pinned laminated composite structures[J]. Composite Structures, 2004, 31(12): 189-195. [25] COX B N. Snubbing effects in the pullout of a fibrous rod from a laminate[J]. Mechanics of Advanced Materials and Structures, 2005, 12(2): 85-98. [26] CUI H, MELROC A R, YASAEEA M. Inter-fibre failure of through-thickness reinforced laminates in combined transverse compression and shear load[J]. Composites Science and Technology, 2018, 165(6): 48-57. |