[1] LI N, WANG G D, MELLY S K, et al. Interlaminar properties of GFRP laminates toughened by CNTs buckypaper interlayer[J]. Composite Structures, 2019, 208: 13-22.
[2] LUO S, OBITAYO W, LIU T. SWCNT-thin-film-enabled fiber sensors for lifelong structural health monitoring of polymeric composites-From manufacturing to utilization to failure[J]. Carbon, 2014, 76: 321-329.
[3] LUO S D, WANG Y, WANG G T, et al. CNT enabled co-braided smart fabrics: A new route for non-invasive, highly sensitive & large-area monitoring of composites[J]. Scientific Reports, 2017, 7: 44056.
[4] WANG G D, LI N, MELLY S K, et al. Monitoring the drilling process of GFRP laminates with carbon nanotube buckypaper sensor[J]. Composite Structures, 2019, 208: 114-126.
[5] CAO C L, HU C G, FANG L, et al. Humidity sensor based on multi-walled carbon nanotube thin films[J]. Journal of Nanomaterials, 2011, 10: 1-5.
[6] FU Y F, LI Y Q, LIU Y F, et al. High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35503-35509.
[7] WAJAHAT M, LEE S, KIM J H, et al. Flexible strain sensors fabricated by meniscus-guided printing of carbon nanotube-polymer composites[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19999-20005.
[8] KHAN S U, KIM J K. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers[J]. Carbon, 2012, 50(14): 5265-5277.
[9] NIE M, XIA Y H, YANG H S. A flexible and highly sensitive graphene-based strain sensor for structural health monitoring[J]. Cluster Computing, 2019, 22: 8217-8224.
[10] ZHANG Z C, WEI H Q, LIU Y J, et al. Self-sensing properties of smart composite based on embedded buckypaper layer[J]. Structural Health Monitoring an International Journal, 2015, 14(2): 127-136.
[11] WANG X, SPARKMAN J, GOU J H. Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling[J]. Composites Communications, 2017, 3: 1-6.
[12] CHIARA A, LICIA P, ALESSIO T, et al. Electro-mechanical properties of multilayer graphene-based polymeric composite obtained through a capillary rise method[J]. Sensors (Basel, Switzerland), 2014, 16(11): 1780-1794.
[13] KANG I, SCHULZ M J, KIM J H, et al. A carbon nanotube strain sensor for structural health monitoring[J]. Smart Material Structures, 2006, 15(3): 737-748.
[14] SIDDHANT D, KUMAR N R, ADITI C. Buckypaper embedded self-sensing composite for real-time fatigue damage diagnosis and prognosis[J]. Carbon, 2018, 139: 353-360.
[15] ALY K, BRADFORD P D. Real-time impact damage sensing and localization in composites through embedded aligned carbon nanotube sheets[J]. Composites Part B Engineering, 2018, 162: 522-531.
[16] GAO L M, CHOU T W, THOSTENSON E T, et al. In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks[J]. Carbon, 2011, 49(10): 3382-3385.
[17] PANOZZO F, ZAPPALORTO M, QUARESIMIN M. Analytical model for the prediction of the piezoresistive behavior of CNT modified polymers[J]. Composites Part B, 2017, 109: 53-63.
[18] SIMMONS J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 1963, 34(6): 1793-1803. |