[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [2] RAFIEE M A, RAFIEE J, WANG Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. Acs Nano, 2009, 3(12): 3884-3890. [3] PARK O K, KIM S G, YOU N H, et al. Synthesis and properties of iodo functionalized graphene oxide/polyimide nanocomposites[J]. Composites Part B: Engineering, 2014, 56: 365-371. [4] ZHAO X, ZHANG Q, CHEN D, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5): 2357-2363. [5] 张勇. 功能梯度材料制备方法的研究现状[J]. 热加工工艺, 2012, 41(18): 14-16. [6] 郭成, 朱维斗, 金志浩. 梯度功能材料的研究现状与展望[J]. 稀有金属材料与工程, 1995, 24(3): 18-25. [7] YANG J, WU H, KITIPORNCHAI S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams[J]. Composite Structures, 2017, 161: 111-118. [8] YANG B, YANG J, KITIPORNCHAI S. Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity[J]. Meccanica, 2017, 52(10): 2275-2292. [9] YANG B, KITIPORNCHAI S, YANG Y F, et al. 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates[J]. Applied Mathematical Modelling, 2017, 49: 69-86. [10] FENG C, KITIPORNCHAI S, YANG J. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs)[J]. Composites Part B: Engineering, 2017, 110: 132-140. [11] SONG M, YANG J, KITIPORNCHAI S. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets[J]. Composites Part B: Engineering, 2018, 134: 106-113. [12] CHEN D, YANG J, KITIPORNCHAI S. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams[J]. Composites Science and Technology, 2017, 142: 235-245. [13] TAM M, YANG Z, ZHAO S, et al. Vibration and buckling characteristics of functionally graded graphene nanoplatelets reinforced composite beams with open edge cracks[J]. Materials, 2019,12(9): 1-13. [14] SONG M, GONG Y, YANG J, et al. Free vibration and buckling analyses of edge-cracked functionally graded multilayer graphene nanoplatelet-reinforced composite beams resting on an elastic foundation[J]. Journal of Sound and Vibration, 2019, 458: 89-108. [15] YANG J, CHEN D, KITIPORNCHAI S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method[J]. Composite Structures, 2018, 193: 281-294. [16] SHEN H S, LIN F, XIANG Y. Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations[J]. Engineering Structures, 2017, 140: 89-97. [17] WANG Y S, GROSS D. Analysis of a crack in a functionally gradient interface layer under static and dynamic loading[J].Key Engineering Materials, 2000, 183: 331-336. [18] WANG Y S, HUANG G Y,GROSS D. On the mechanical modeling of functionally graded interracial zone with a griffith crack: Anti-plane deformation[J]. Journal of Applied Mechanics, 2003, 70: 676-680. [19] 黄立新, 姚祺, 张晓磊, 等. 基于分层法的功能梯度材料有限元分析[J]. 玻璃钢/复合材料, 2013(2): 43-48. [20] SIMSEK M, YURTCU H H. Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory[J]. Composite Structures, 2013, 97: 378-386. |