[1] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. [2] 陈庆远. 复合材料薄壁结构的屈曲和后屈曲分析[D]. 上海: 上海交通大学, 2015. [3] 江泽慧, 孙正军, 任海青. 先进生物质复合材料在风电叶片中的应用[J]. 复合材料学报, 2006, 23(3): 127-129. [4] ABBAS L K, LEI M, RUI X. Natural vibrations of open-variable thickness circular cylindrical shells in high temperature field[J]. Journal of Aerospace Engineering, 2009, 23(3): 205-212. [5] JONIAK S, MAGNUCKI K, SZYC W. Buckling study of steel open circular cylindrical shells in pure bending[J]. Strain, 2011, 47(3): 209-214. [6] YE T, JIN G, SU Z, et al. A unified Chebyshev-Ritz formulation for vibration analysis of composite laminated deep open shells with arbitrary boundary conditions[J]. Archive of Applied Mechanics, 2014, 84(4): 441-471. [7] YE T, JIN G, CHEN Y, et al. A unified formulation for vibration analysis of open shells with arbitrary boundary conditions[J]. International Journal of Mechanical Sciences, 2014, 81: 42-59. [8] SU Z, JIN G, YE T. Free vibration analysis of moderately thick functionally graded open shells with general boundary conditions[J]. Composite Structures, 2014, 117: 169-186. [9] YAO X, TANG D, PANG F, et al. Exact free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix[J]. Journal of Zhejiang University-SCIENCE A, 2016, 17(4): 295-316. [10] PUNERA D, KANT T. Free vibration of functionally graded open cylindrical shells based on several refined higher order displacement models[J]. Thin-Wall Structure, 2017, 119:707- 726. [11] WANG Q, SHI D, PANG F, et al. Benchmark solution for free vibration of thick open cylindrical shells on Pasternak foundation with general boundary conditions[J]. Meccanica, 2017, 52(1-2): 457-482. |