[1] BOLOTIN V V. Delaminations in composite structures: Its origin, buckling, growth and stability[J]. Composites Part B: Engineering, 1996, 27(2 PART B): 129-145. [2] GARG A C. Delamination-a damage mode in composite structures[J]. Engineering Fracture Mechanics, 1988, 29(5): 557-584. [3] MAIMÍ P, CAMANHO P P, MAYUGO J A, et al. Matrix cracking and delamination in laminated composites. Part Ⅰ: Ply constitutive law, first ply failure and onset of delamination[J]. Mechanics of Materials, 2011, 43(4): 169-185. [4] GUILLAMET G, TURON A, COSTA J, et al. A quick procedure to predict free-edge delamination in thin-ply laminates under tension [J]. Engineering Fracture Mechanics, 2016, 168: 28-39. [5] YOKOZEKI T, KURODA A, YOSHIMURA A, et al. Damage characterization in thin-ply composite laminates under out-of-plane transverse loadings[J]. Composite Structures, 2010, 93(1): 49-57. [6] HOWARD W, GOSSARD JR T, JONES R M. Composite laminate free-edge reinforcement with U-shaped caps part Ⅱ: Theoretical-experimental correlation[J]. AIAA Journal, 1989, 27(5): 617-623. [7] HOWARD W, GOSSARD JR T, JONES R. Reinforcement of composite laminate free edges with U-shaped caps[C]//27th Structures, Structural Dynamics and Materials Conference. 1986: 972. [8] TENG J, ZHUANG Z, LI B. A study on low-velocity impact damage of Z-pin reinforced laminates[J]. Journal of Mechanical Science and Technology, 2007, 21(12): 2125-2132. [9] BODYALO N, KOGAN A. Fabrication of composite sewing thread using polyester microfibres[J]. Fibre Chemistry, 2005, 37(2): 154-157. [10] IVANOV D S, LOMOV S V, BOGDANOVICH A E, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1144-1157. [11] LOMOV S V, BOGDANOVICH A E, IVANOV D S, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part Ⅰ: Materials, methods and principal results[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1134-1143. [12] MITTELSTEDT C, BECKER W. Interlaminar stress concentrations in layered structures: Part Ⅰ-a selective literature survey on the free-edge effect since 1967[J]. Journal of Composite Materials, 2004, 38(12): 1037-1062. [13] YUN N G, WON Y G, KIM S C. Toughening of carbon fiber/epoxy composite by inserting polysulfone film to form morphology spectrum[J]. Polymer, 2004, 45(20): 6953-6958. [14] ZHANG J, YANG T, LIN T, et al. Phase morphology of nanofibre interlayers: Critical factor for toughening carbon/epoxy composites[J]. Composites Science and Technology, 2012, 72(2): 256-262. [15] HSIAO H M, NI C N, WU M D, et al. A novel optical technique for observation of global particle distribution in toughened composites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1523-1529. [16] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58. [17] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430): 603-605. [18] LU J P. Elastic properties of carbon nanotubes and nanoropes[J]. Physical Review Letters, 1997, 79(7): 1297. [19] SHAO W, WANG Q, WANG F, et al. The cutting of multi-walled carbon nanotubes and their strong interfacial interaction with polyamide 6 in the solid state[J]. Carbon, 2006, 44(13): 2708-2714. [20] AYATOLLAHI M R, SHADLOU S, SHOKRIEH M M, et al. Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites[J]. Polymer Testing, 2011, 30(5): 548-556. [21] LI C, CHOU T W. Multiscale modeling of compressive behavior of carbon nanotube/polymer composites[J]. Composites Science and Technology, 2006, 66(14): 2409-2414. [22] LAU K T, HUI D. Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures[J]. Carbon, 2002, 40(9): 1605-1606. [23] LAU K T, SHI S Q. Failure mechanisms of carbon nanotube/epoxy composites pretreated in different temperature environments[J]. Carbon, 2002, 40(15): 2965-2968. [24] 方征平, 王建国, 顾嫒娟, 等. 胺功能化多壁碳纳米管/环氧树脂复合材料的研究[C]//2006年全国高分子材料科学与工程研讨会论文集. 中国化学会, 中国机械工程学会, 中国材料研究学会, 清华大学, 2006: 565-566. [25] MA P C, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1345-1367. [26] 林少锋. 碳纳米管含量及分散性对环氧树脂复合材料导电性及力学性能的影响[D]. 长沙: 国防科学技术大学, 2014. [27] KRAVCHENKO O, PEDRAZZOLI D, KOVTUN D, et al. Incorporation of plasma-functionalized carbon nanostructures in composite laminates for interlaminar reinforcement and delamination crack monitoring[J]. Journal of Physics and Chemistry of Solids, 2018, 112: 163-170. [28] KHAN S U, KIM J K. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers[J]. Carbon, 2012, 50(14): 5265-5277. [29] ZHANG H, LIU Y, KUWATA M, et al. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 102-110. [30] LIU L, WU J, ZHOU Y. Enhanced delamination initiation stress and monitoring sensitivity of quasi-isotropic laminates under in-plane tension by interleaving with CNT buckypaper[J]. Composites Part A: Applied Science and Manufacturing, 2016, 89: 10-17. [31] Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905[S]. [32] SHEN J, HUANG W, WU L, et al. The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites[J]. Composites Science and Technology, 2007, 67(15): 3041-3050. [33] PROLONGO S G, GUDE M R, UREÑA A. The curing process of epoxy/amino-functionalized MWCNTs: Calorimetry, molecular modelling, and electron microscopy[J]. Journal of Nanotechnology, 2010(6): 420432. |