[1] ISABELLA G C, ANNA M, GIULIO Z, et al. Textile reinforced concrete: Experimental investigation on design parameters[J]. Materials and Structures, 2013, 46: 1933-1951. [2] TRIANTAFILLOU T, PAPANICOLAOU C. Innovative applications of textile-based composites in strengthening and seismic retrofitting as well as in the prefabrication of new structures[J]. Advanced Materials Research, 2013, 639-640 (1): 26-41. [3] PELLEGRINO C, T D′ANTINO. Experimental behaviour of existing precast prestressed reinforced concrete elements strengthened with cementitious composites[J]. Composites Part B, 2013, 55: 31-40. [4] BRUCKNER A, ORTLEPP R, CURBACH M. Textile reinforced concrete for strengthening in bending and shear[J]. Materials and Structures, 2006, 39(8): 741-748. [5] SCHLADITZ F, FRENZEL M, EHLIG D, et al. Bending load capacity of reinforced concrete slabs strengthened with textile reinforced concrete[J]. Engineering Structures, 2012, 40: 317-326. [6] BRUCKNER A, ORTLEPP R, CURBACH M. Anchoring of shear strengthening for T-beams made of textile reinforced concrete (TRC)[J]. Materials and Structures, 2008, 41(2): 407-418. [7] ESCRIP C, GIL L, BERNAT-MASO E, et al. Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar[J]. Construction and Building Materials, 2015, 83: 248-260. [8] XU S, KRUGER M, REINHARDT H, et al. Bond characteristics of carbon, alkali resistant glass, and aramid textiles in mortar[J]. Journal of Materials in Civil Engineering, 2004, 16(4): 356-364. [9] RAMBO D A S, SILVA F A, FILHO R D T, et al. Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete[J]. Materials and Design, 2005, 65: 24-33. [10] BARHUM R, MECHTCHERINE V. Effect of short dispersed glass and carbon fibers on the behaviour of textile-reinforced concrete under tensile loading[J]. Engineering Fracture Mechanics, 2012, 92: 56-71. [11] BARHUM R, MECHTCHERINE V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete[J]. Materials & Structures, 2013, 46(4): 557-572. [12] 徐世烺, 阎轶群. 低配网率纤维编织网增强混凝土轴拉力学性能[J]. 复合材料学报, 2011, 28(5): 206-213. [13] 李赫, 徐世烺. 纤维编织网增强混凝土薄板力学性能的研究[J]. 建筑结构学报, 2007, 28(4): 117-122. [14] TSESARSKY M, PELED A, KATA A, et al. Strengthening concrete elements by confinement within textile reinforced concrete (TRC) shells-Static and impact properties[J]. Construction and Building Materials, 2013, 44: 514-523. [15] JESSE F, WILL N, CURBACH M, et al. Loading-bearing behavior of textile-reinforced concrete[J]. Concrete Structures, 2008, 250: 59-68. [16] HEGGER J, WILL N, BRUCKERMANN O, et al. Loading-bearing behavior and simulation of textile-reinforced concrete[J]. Materials and Structures, 2006, 39(8): 765-776. [17] LARRINAGA P, CHASTRE C, BISCAIA H C, et al. Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress[J]. Materials & Design, 2014, 55: 66-74. [18] 尹世平, 徐世烺. 纤维编织网增强混凝土的拉伸力学模型[J]. 复合材料学报, 2012, 29(5): 222-229. [19] 刘玲玲. 碳纤维织物增强混凝土薄板力学性能研究[D]. 湖南: 湖南大学, 2017. [20] 碳纤维复丝拉伸性能试验研究: GB/T 3362—2017[S]. 北京: 中国标准出版社, 2018. |