[1] 曾宪明, 雷志梁, 张文巾, 等. 关于锚杆“定时炸弹”问题的讨论: 答郭映忠教授[J]. 岩石力学与工程学报, 2002, 21(1): 143-147. [2] ZHU L, KANG J W, ZHAO W, et al. Experimental study on determining design parameters of non-prestressed BFRP anchor for supporting soil slope[J]. Journal of Highway and Transportation Research and Development, 2017, 11(4): 32-42. [3] 匡政, 白晓宇, 张明义, 等. 弯曲与直锚GFRP复合材料抗浮锚杆锚固特性试验研究[J]. 复合材料学报, 2019, 36(5): 1063-1073. [4] 郑晨, 张明义, 白晓宇, 等. 大直径玻璃纤维增强聚合物复合材料抗浮锚杆外锚固性能试验及黏结-滑移模型[J]. 复合材料学报, 2020, 37(4): 896-906. [5] 白晓宇, 匡政, 张明义, 等. 全螺纹GFRP抗浮锚杆与混凝土底板黏结锚固性能的试验研究[J]. 材料导报, 2019, 33(18): 3035-3042. [6] 郑晨, 白晓宇, 张明义, 等. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13202. [7] NKURUNZIZA G, DEBAIKY A, COUSIN P, et al. Durability of GFRP bars: A critical review of the literature[J]. Progress in Structural Engineering and Materials, 2005, 7(4): 194-209. [8] 曾国机. 土层抗浮锚杆受力机理研究分析[D]. 重庆: 重庆大学, 2004. [9] KUANG Z, ZHANG M Y, BAI X Y. Load-bearing characteristics of fibreglass uplift anchors in weathered rock[J]. Proceedings of the Institution of Civil Engineers, 2020, 173(1): 49-57. [10] 王洋, 冯君, 李珈瑶, 等. FRP锚杆在岩土锚固中的研究进展[J]. 工程地质学报, 2018, 26(3): 776-784. [11] 郝庆多, 王勃, 欧进萍. 纤维增强塑料筋在土木工程中的应用[J]. 混凝土, 2006(9): 38-40. [12] WU G, WANG X, WU Z, et al. Durability of basalt fibers and composites in corrosive environments[J]. Journal of Composite Materials, 2015, 49: 873-877. [13] 袁勇, 贾新, 闫富有. 岩石GFRP锚杆的可行性研究[J]. 公路交通科技, 2004, 21(9): 13-15. [14] 李景文, 乔建刚, 付旭, 等. 岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展[J]. 材料导报, 2019, 33(9): 1567-1574. [15] 张伟, 薛炜, 古伟斌, 等. GFRP锚杆在软土地区深基坑工程中的应用研究[J]. 广东土木与建筑, 2010, 17(7): 26-27. [16] 黄生文, 刘廷望, 邱贤辉, 等. GFRP锚杆在软土地区深基坑工程中的应用研究[J]. 土木工程学报, 2012, 45(2): 90-96. [17] D′ANTINO T, PISANI M A. Influence of sustained stress on the durability of glass FRP reinforcing bars[J]. Construction and Building Materials, 2018, 187: 474-486. [18] 周祝林, 杨云娣. 纤维增强塑料蠕变机理的初步探讨[J]. 玻璃钢/复合材料, 1985(4): 29-33. [19] 白晓宇. GFRP 抗浮锚杆锚固机理试验研究与理论分析[D]. 青岛: 青岛理工大学, 2015. [20] 穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990. [21] 沈叔曾. 玻璃钢的蠕变性能[J]. 力学季刊, 1982(2): 71-78. [22] 秦予铮, 李志刚, 孙同生. 基于H-K固体模型的玻璃钢蠕变分析[J]. 兵工自动化, 2019, 38(10): 83-87. [23] PENG R D. Modeling of nano-reinforced polymer composites: Microstructure effect on young′s modulus[J]. Computational Materials Science, 2012, 60: 19-31. [24] 杨挺青. 粘弹性力学[M]. 武汉: 华中理工大学出版社, 1990. [25] 刘清, 朱四荣, 梁娜. 不同铺层角度玻璃钢长期蠕变性能的研究[J]. 玻璃钢/复合材料, 2017(5): 53-56. [26] 帅词俊, 段吉安, 王炯. 关于黏弹性材料的广义Maxwell模型[J]. 力学学报, 2006, 38(4): 565-569. [27] 李佳珑, 徐卫亚, 王如宾. 基于广义Kelvin模型的三维流变损伤本构模型[J]. 三峡大学学报(自然科学版), 2013, 35(1): 54-57. [28] 蒙上阳, 唐国金, 雷勇军, 等. Burgers模型的参数获取方法[J]. 固体火箭技术, 2003, 26(2): 27-29. [29] 白晓宇, 郑晨, 张明义, 等. 大直径GFRP抗浮锚杆蠕变试验及蠕变模型[J]. 岩土工程学报, 2020, 42(7): 1304-1311. [30] KATSUKI F, UOMOTO T. Prediction of deterioration of FRP rods due to alkali attack[C]//Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the 2nd International RILEM Symposium. London: CRC Press, 1995: 82-89. [31] DUTTA P K, HUI D. Creep rupture of a GFRP composite at elevated temperatures[J]. Computers & Structures, 2000, 76(1): 153-161. [32] BENMOKRANE B, ZHANG B, CHENNOUF A, et al. Evaluation of aramid and carbon fibre reinforced polymer composite tendons for prestressed ground anchors[J]. Canadian Journal of Civil Engineering, 2000, 27(5): 1031-1045. [33] TANNOUS F E, SAADATMANESH H. Durability of AR glass fiber reinforced plastic bars[J]. Journal of composites for Construction, 1999, 3(1): 12-19. [34] UOMOTO T, NISHIMURA T. Deterioration of aramid, glass, and carbon fibers due to alkali, acid, and water in different temperatures[J]. ACI Special Publication, 1999, 188: 515-522. [35] 李国维, 高磊, 黄志怀, 等. 全长黏结玻璃纤维增强聚合物锚杆破坏机制拉拔模型试验[J]. 岩石力学与工程学报, 2007, 26(8): 1653-1663. [36] 李国维, 刘朝权, 黄志怀, 等. 应用玻璃纤维锚杆加固公路边坡现场试验[J]. 岩石力学与工程学报, 2010, 29(增刊2): 4056- 4062. [37] 孙奇. GFRP锚杆冻融循环与长期荷载作用力学性能试验研究[D]. 长沙: 中南大学, 2012. [38] 许宏发, 孙远, 陈应才. 土层锚杆蠕变试验研究[J]. 工程勘察, 2006, 34(9): 6-8. [39] YOUSSEF T, BENMOKRANE B. Creep behavior and tensile properties of GFRP bars under sustained service loads[J]. ACI Special Publication, 2011, 275(39): 1-20. [40] GONILHA J A, CORREIA J R, BRANCO F A. Creep response of GFRP-concrete hybrid structures: Application to a footbridge prototype[J]. Composites Part B: Engineering, 2013, 53: 193-206. [41] 李国维, 汪井秋, SIDI, 等. 侵蚀环境下预应力GFRP锚杆结构应力松弛特征[J]. 岩石力学与工程学报, 2020, 39(5): 877-886. [42] LEE J Y, KIM K H, KIM S W, et al. Strength degradation of glass fiber reinforced polymer bars subjected to reversed cyclic load[J]. Strength of Materials, 2014, 46(2): 235-240. [43] 李国维, 郑诚, 陈圣刚, 等. 引江济淮软岩全黏结GFRP筋锚固蜕化现场实验[J]. 水利学报, 2017, 48(7): 825-836. [44] 高永红, 申俊宇, 金清平, 等. 反复荷载下GFRP筋与混凝土黏结性能[J]. 中国塑料, 2018, 32(7): 100-104. [45] WANG Y C , WONG P M H , KODUR V. An experimental study of the mechanical properties of fibre reinforced polymer (FRP) and steel reinforcing bars at elevated temperatures[J]. Composite Structures, 2007, 80(1): 131-140. [46] SAAFI M. Effect of fire on FRP reinforced concrete members[J]. Composite Structures, 2002, 58(1): 11-20. [47] MICELLI F, NANNI A. Durability of FRP rods for concrete structures[J]. Construction & Building Materials, 2004, 18(7): 491-503. [48] 周长东. 火灾高温下玻璃纤维筋的力学性能研究[J]. 建筑科学与工程学报, 2006, 23(1): 23-28. [49] ALSAYED S, AL-SALLOUM Y, ALMUSALLAM T, et al. Performance of glass fiber reinforced polymer bars under elevated temperatures[J]. Composites Part B (Engineering), 2012, 43(5): 2265-2271. [50] STECKEL G L, HAWKINS G F, BAUER J L. Environmental durability of composites for seismic retrofit of bridge columns[C]//Proceeding of NIST Work shop on Standards Development for the Use of Fiber Reinforced Polymers for the Rehabilitation of Concrete and Masonry Structures. USA: Springer Netherlands, 1998: 83-96. [51] MASMOUDI A, MASMOUDI R, DAOUD A, et al. Long-term bond performance of GFRP bars in concrete under temperature ranging from 20 ℃ to 80 ℃[J]. Construction & Building Materials, 2011, 25(2): 486-493. [52] ALVES J, EL-RAGABY A, EL-SALAKAWY E. Durability of GFRP bars bond to concrete under different loading and environmental conditions[J]. Journal of Composites for Construction, 2011, 15(3): 249-262. [53] 高丹盈, BRAHIM B. 纤维聚合物筋与混凝土粘结性能的影响因素[J]. 工业建筑, 2001, 31(2): 9-14. [54] 胡建阳, 黄承智. 玻璃钢的蠕变分析[J]. 武汉理工大学学报(信息与管理工程版), 1989, 11(3): 16-24. [55] SAYED-AHMED E Y, SHRIVE N G. A new steel anchorage system for post-tensioning applications using carbon fiber reinforced plastic tendons[J]. Canadian Journal of Civil Engineering, 1998, 25(1): 113-127. [56] 李国维, 汪井秋, 郑诚, 等. 引江济淮工程软岩及膨胀土边坡锚固现场试验[J]. 水利水电技术, 2019, 50(3): 155-160. [57] 张钢琴. 纤维聚合物锚杆的锚固机理及数值分析[D]. 郑州: 郑州大学, 2004. [58] AL-MAYAH A, SOUDKI K, PLUMTREE A. Mechanical behavior of CFRP rod anchors under tensile loading[J]. Journal of Composites for Construction, 2001, 5(2): 128-135. [59] 李伟伟. GFRP抗浮锚杆外锚固试验研究及有限元模拟[D]. 青岛: 青岛理工大学, 2013. [60] FAVA G, CARVELLI V, PISANI M A. Remarks on bond of GFRP rebars and concrete[J]. Composites Part B Engineering, 2016, 93: 210-220. [61] WEI W B, CHENG Y M. Soil nailed slope by strength reduction and limit equilibrium methods[J]. Computers and Geotechnics, 2010, 37(5): 602-618. [62] CHENG Y M, AU S K, ALBERT T Y. Laboratory and field evaluation of several types of soil nails for different geological conditions[J]. Canadian Geotechnical Journal, 2016, 53(4): 634-645. [63] 张凯, 杨庆, 蒋景彩, 等. 全长粘结岩石锚杆拉拔数值模拟[J]. 大连理工大学学报, 2013, 53(5): 710-714. [64] MESBAH H A, BENZAID R. Damage-based stress-strain model of RC cylinders wrapped with CFRP composites[J]. Advances in Concrete Construction, 2017, 5(5): 539-561. [65] 李志鹏. GFRP-高强混凝土界面行为的有限元分析[D]. 大连: 大连理工大学, 2010. [66] 贾科科. 浮力作用下底板-GFRP抗浮锚杆体系数值模拟[D]. 青岛: 青岛理工大学, 2015. [67] 张明义, 白晓宇, 匡政, 等. 玻璃纤维增强聚合物抗浮锚杆与基础底板的锚固特性有限元分析[J]. 广西大学学报(自然科学版), 2018, 43(5): 1878-1884. [68] 朱磊, 张明义, 白晓宇. 中风化岩地基中两种不同材质抗浮锚杆的承载性能和变形特性[J]. 工业建筑, 2016, 46(12): 78-83, 145. [69] GOORANORIMI O, SUARIS W, NANNI A. A model for the bond-slip of a GFRP bar in concrete[J]. Engineering Structures, 2017, 146: 34-42. [70] 王南, 张景科, 黄军朋, 等. 土遗址用GFRP锚杆双锚固模型试验与模拟分析[C]//陆新征编. 第26届全国结构工程学术会议论文集(第Ⅲ册). 长沙: 工程力学杂志社, 2017: 619-622. [71] JEON J, KIM J, MULIANA A. Modeling time-dependent and inelastic response of fiber reinforced polymer composites[J]. Computational Materials Science, 2013, 70: 37-50. [72] CHOI K K, TAHA M M R, MASIA M J, et al. Numerical investigation of creep effects on FRP-strengthened RC beams[J]. Journal of Composites for Construction, 2010, 14(6): 812-822. |