[1] FU Y, ZHONG J, CHEN Y. Thermal postbuckling analysis of fiber-metal laminated plates including interfacial damage[J]. Composites Part B: Engineering, 2014, 56: 358-364. [2] BI R G, FU Y M, TIAN Y P, et al. Buckling and postbuckling analysis of elasto-plastic fiber metal laminates[J]. Acta Mechanica Solida Sinica, 2014, 27(1): 73-84. [3] 程里朋, 平学成, 王春光, 等. 纤维金属层板铆接剩余强度影响因素研究[J]. 中国机械工程, 2019, 30(19): 2319-2328. [4] SINMAZCELIK T, AVCU E, BORA M Ö, et al. A review: Fibre metal laminates, background, bonding types and applied test methods[J]. Materials & Design, 2011, 32: 3671-3685. [5] PARK S Y, CHOI W J, CHOI H S. A comparative study on the properties of GLARE laminates cured by autoclave and autoclave consolidation followed by oven postcuring[J]. The International Journal of Advanced Manufacturing Technology, 2010, 49: 605-613. [6] KOTIK H G, JUAN E. PEREZ I. Short-beam shear fatigue behavior of fiber metal laminate (Glare)[J]. International Journal of Fatigue, 2017, 95: 236-242. [7] CHEN Q, GUAN Z D, LI Z S, et al. Experimental investigation on impact performances of GLARE laminates[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1784-1792. [8] HUANG Y, LIU J Z, HUANG X, et al. Delamination and fatigue crack growth behavior in fiber metal laminates (Glare) under single overloads[J]. International Journal of Fatigue, 2015, 78: 53-60. [9] 杜丹丹. GLARE层板力学性能的数值模拟与试验研究[D]. 南京: 南京航空航天大学, 2016. [10] 应少军, 李建伟, 平学成, 等. 纤维金属层板铆接损伤机理与预测的研究[J]. 玻璃钢/复合材料, 2018(5): 25-32. [11] FRIZZELL R M, MCCARTHY C T, MCCARTHY M A. Predicting the effects of geometry on the behaviour of fibre metal laminate joints[J]. Composite Structures, 2011, 93: 1877-1889. [12] FRIZZELL R M, MCCARTHY C T, MCCARTHY M A. A comparative study of the pin-bearing responses of two glass-based fibre metal laminates[J]. Composites Science & Technology, 2008, 68: 3314-3321. [13] FRIZZELL R M, MCCARTHY C T, MCCARTHY M A. Simulating damage and delamination in fibre metal laminate joints using a three-dimensional damage model with cohesive elements and damage regularization[J]. Composites Science and Technology, 2011, 71: 1225-1235. [14] 平学成, 朱增辉, 吴卫星, 等. 用应变能密度法分析纤维金属层板的微动疲劳特性[J]. 复合材料学报, 2016, 32(7): 1553-1563. [15] YEH P C, CHANG P Y, YANG J M, et al. Blunt notch strength of hybrid boron/glass/aluminum fiber metal laminates[J]. Materials Science&Engineering A, 2011, 528(4-5): 2164-2173. [16] SANTOS T F, CAMPILHO R D S G. Numerical modelling of adhesively-bonded double-lap joints by the extended finite element method[J]. Finite Elements in Analysis and Design, 2017, 133: 1-9. [17] LEE D W, SONG J I. Research on simple joint method using fiber-metal laminate design for improved mechanical properties of CFRP assembly structure[J]. Composites Part B: Engineering, 2019, 164: 358-367. [18] ZHANG X L, HE X C, GU F S, et al. Self-piercing riveting of aluminium-lithium alloy sheet materials[J]. Journal of Materials Processing Technology, 2019, 268: 192-200. [19] ZHANG X L, HE X C, XING B Y, et al. Quasi-static and fatigue characteristics of self-piercing riveted joints in dissimilar aluminium-lithium alloy and titanium sheets[J]. Journal of Materials Research and Technology, 2020, 9(3): 5699-5711. [20] ZHANG X L, HE X C, WEI W J, et al. Fatigue characterization and crack propagation mechanism of self-piercing riveted joints in titanium plates[J]. International Journal of Fatigue, 2020, 134: 105465. [21] JIN K, WANG H, TAO J, et al. Effect of the interference fit on the stress distribution and failure mode of a flat-head riveted GLARE joint[J]. Composite Structures, 2020, 235: 111788. [22] XU P F, ZHOU Z G, LIU T Z, et al. The investigation of viscoelastic mechanical behaviors of bolted GLARE joints: Modeling and experiments[J]. International Journal of Mechanical Sciences, 2020, 175: 105538. [23] SMITH K, TOPPER T, WATSON P. A stress-strain function for the fatigue of metals (stress-strain function for metal fatigue including mean stress effect)[J]. Journal of Materials, 1970(5): 767-778. [24] 潘容, 古远兴. 微动疲劳寿命预测方法研究[J]. 燃气涡轮试验与研究, 2009, 22(2): 17-21. [25] BROWN M W, MILLER K J. A theory for fatigue failure under multiaxial stress-strain conditions[J]. Proceedings of the Institution of Mechanical Engineers, 1973, 187: 745-755. |