[1] 毛希玮,徐莹莹. 基于无人机的风机叶片缺陷自动检测技术[J]. 复合材料科学与工程,2020(9): 85-89. [2] ZABIHOLLAH A, ENTESARI F, ALIMOHMMADI H. Fault detection of wind turbine blade under sudden change of wind speed condition using fiber optics[C]//Preceedings of the 2015 IEEE Sensors Applications Symposium (SAS). Zadar: 2015: 1-4. [3] 张保钦, 雷保珍, 赵林惠, 等. 风机叶片故障预测的振动方法研究[J]. 电子测量与仪器学报, 2014, 28(3): 285-291. [4] OH K Y, PARK J Y, LEE J S, et al. A novel method and its field tests for monitoring and diagnosing blade health for wind turbines[J]. IEEE Transactions on Instrumentation & Measurement, 2015, 64(6): 1726-1733. [5] WALLE G, ABUHAMAD M. TOMA E, et al. Defect indications in sono-thermography in relation to defect location and structure[C]//2004 Quantitative InfraRed Thermography. 2004: 1-6. [6] GIRSHICK R, DONAHUE J, DARRELLT T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Washington, DC: IEEE Computer Society, 2014: 580-587. [7] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Washington, DC: IEEE Computer Society, 2015: 1440-1448. [8] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. [9] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017: 2961-2969. [10] RESMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV: 2016: 779-788. [11] LIU W, AGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision(CVPR). Berlin: Springer, 2016: 21-37. [12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014. [13] 杨珺, 张闯, 孙秋野, 等. 风电场选址综述[J]. 太阳能学报, 2012, 33(s1): 136-144. [14] 吴林阳, 杜伟健, 陈小兵, 等. 一种运算和数据协同优化的深度学习编译框架[J]. 高技术通讯, 2020, 30(2): 120-125. [15] 朱晓慧, 钱丽萍, 傅伟. 图像数据增强技术研究综述[J]. 软件导刊, 2021, 20(5): 230-236. [16] BALLARD D H. Generalizing the Hough transform to detect arbiyrary shapes[J]. Pattern Recogniton, 1981, 13(2): 111-122. [17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). USA: 2016: 770-778. [18] XIE S, GIRSHICK R, HE K, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017: 5987- 5995. |