复合材料科学与工程 ›› 2022, Vol. 0 ›› Issue (3): 38-44.DOI: 10.19936/j.cnki.2096-8000.20220328.005

• 基础研究 • 上一篇    下一篇

基于改进SSD的风机叶片缺陷检测

朱佳伟, 文传博*   

  1. 上海电机学院,上海201306
  • 收稿日期:2021-06-24 出版日期:2022-03-28 发布日期:2022-04-24
  • 通讯作者: 文传博(1981-),男,博士,教授,主要从事故障诊断、状态估计等方面的研究,wencb@sdju.edu.cn。
  • 作者简介:朱佳伟(1996-),男,硕士研究生,主要从事风力发电机故障诊断、人工智能方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(61973209);上海市自然科学基金(20ZR1421200)

Defect detection of wind turbine blade based on improved SSD

ZHU Jia-wei, WEN Chuan-bo*   

  1. Shanghai DianJi University, Shanghai 201306, China
  • Received:2021-06-24 Online:2022-03-28 Published:2022-04-24

摘要: 针对传统算法检测精度低、耗时长的问题,本文提出一种基于改进SSD的风机叶片缺陷检测方法。首先,采用霍夫变换对处于倾斜状态的风机叶片进行校正,并裁剪为统一的大小形成完整的数据集。接着,通过两种残差网络(ResNet,ResNext)替代传统VGG作为SSD算法的Backbone进行特征提取。最后,通过预测网络实现缺陷类别和边界框定位的预测。实验结果显示,改进SSD算法较传统SSD算法在mAP值上提升了7%,同时,检测效率也大幅提升。

关键词: 风机叶片, 目标检测, 改进SSD, 缺陷检测, 复合材料

Abstract: Aiming at the problems of low accuracy and time-consuming of traditional algorithm, this paper proposed a defect detection method of wind turbine(WT) blade based on improved SSD. Firstly, the inclined WT blades are corrected by Hough transform and trimmed to a uniform size to form a complete data set. Then, two kinds of residual networks (ResNet, ResNext) are used to replace the traditional VGG as the backbone of SSD algorithm for feature extraction. Finally, the prediction network is used to complete the prediction of defect category and boundary box location. The experimental results show that the improved SSD algorithm improves the value of mAP by 7% compared with the traditional SSD algorithm. At the same time, the detection efficiency has been greatly improved.

Key words: wind turbine blade, object detection, improved SSD, fault detection, composites

中图分类号: