[1] JIN F L, LI X, PARK S J. Synthesis and application of epoxy resins: A review[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 1-11. [2] WU D Y, MEURE S, SOLOMON D. Self-healing polymeric materials: A review of recent developments[J]. Progress in Polymer Science, 2008, 33(5): 479-522. [3] COHADES A, BRANFOOT C, RAE S, et al. Progress in self-healing fiber-reinforced polymer composites[J]. Advanced Materials Interfaces, 2018, 5(17): 1800177. [4] 杜逸纯, 赵博文, 温妍, 等. 本征型自修复高分子材料的研究进展[J]. 材料科学与工程学报, 2020, 38(3): 509-517. [5] 申艳娇, 杨涛, 牛雪娟, 等. 外援型聚合物基自修复复合材料研究进展[J]. 玻璃钢/复合材料, 2015(1): 92-96, 63. [6] 顾海超, 杨涛, 申艳娇. 聚合物基复合材料自修复的研究进展[J]. 材料导报, 2016, 30(s2): 374-377, 388. [7] MEURE S, WU D Y, FURMAN S. Polyethylene-co-methacrylic acid healing agents for mendable epoxy resins[J]. Acta Materialia, 2009, 57(14): 4312-4320. [8] MEURE S, WU D Y, FURMAN S A. FTIR study of bonding between a thermoplastic healing agent and a mendable epoxy resin[J]. Vibrational Spectroscopy, 2010, 52(1): 10-15. [9] MEURE S, VARLEY R J, WU D Y, et al. Confirmation of the healing mechanism in a mendable EMAA-epoxy resin[J]. European Polymer Journal, 2012, 48(3): 524-531. [10] MEURE S, FURMAN S, KHOR S. Poly[ethylene-co-(methacrylic acid)] healing agents for mendable carbon fiber laminates[J]. Macromolecular Materials and Engineering, 2010, 295(5): 420-424. [11] VARLEY R J, PARN G P. Thermally activated healing in a mendable resin using a non woven EMAA fabric[J]. Composites Science and Technology, 2012, 72(3): 453-460. [12] PINGKARAWAT K, WANG C H, VARLEY R J, et al. Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon-epoxy laminates[J]. Composites Part a-Applied Science and Manufacturing, 2013, 50: 22-30. [13] PINGKARAWAT K, WANG C H, VARLEY R J, et al. Healing of fatigue delamination cracks in carbon-epoxy composite using mendable polymer stitching[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(1): 75-86. [14] PINGKARAWAT K, MOURITZ A P. Stitched mendable composites: Balancing healing performance against mechanical performance[J]. Composite Structures, 2015, 123: 54-64. [15] BYRNE M T, GUN'KO Y K. Recent advances in research on carbon nanotube-polymer composites[J]. Advanced Materials, 2010, 22(15): 1672-1688. [16] MAS B, FERNÁNDEZ-BLÁZQUEZ J P, DUVAL J, et al. Thermoset curing through Joule heating of nanocarbons for composite manufacture, repair and soldering[J]. Carbon, 2013, 63: 523-529. [17] XU X, ZHANG Y, JIANG J, et al. In-situ curing of glass fiber reinforced polymer composites via resistive heating of carbon nanotube films[J]. Composites Science and Technology, 2017, 149: 20-27. [18] YAO X, HAWKINS S C, FALZON B G. An advanced anti-icing/de-icing system utilizing highly aligned carbon nanotube webs[J]. Carbon, 2018, 136: 130-138. [19] JOO S J, YU M H, KIM W S, et al. Damage detection and self-healing of carbon fiber polypropylene (CFPP)/carbon nanotube (CNT) nano-composite via addressable conducting network[J]. Composites Science and Technology, 2018, 167: 62-70. [20] REN D, CHEN Y, LI H, et al. High-efficiency dual-responsive shape memory assisted self-healing of carbon nanotubes enhanced polycaprolactone/thermoplastic polyurethane composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580: 123731. [21] JIMÉNEZ-SUÁREZ A, MARTÍN-GONZÁLEZ J, SÁNCHEZ-ROMATE X F, et al. Carbon nanotubes to enable autonomous and volumetric self-heating in epoxy/polycaprolactone blends[J]. Composites Science and Technology, 2020, 199: 108321. [22] GAO Y, LIU L, WU Z J, et al. Toughening and self-healing fiber-reinforced polymer composites using carbon nanotube modified poly (ethylene-co-methacrylic acid) sandwich membrane[J]. Composites Part a-Applied Science and Manufacturing, 2019, 124: 10. |