[1] YANG X, SUN Y, YANG J, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125: 1-11. [2] LIU S, ZHANG Y, LIU P. New analytical model for heat transfer efficiency of metallic honeycomb structures[J]. International Journal of Heat and Mass Transfer, 2008, 51(25-26): 6254-6258. [3] HONG S T, PAN J, TYAN T, et al. Quasi-static crush behavior of aluminum honeycomb specimens under non-proportional compression-dominant combined loads[J]. International Journal of Plasticity, 2006, 22(6): 1062-1088. [4] DHARMASENA K P, WADLEY H N G, XUE Z, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J]. International Journal of Impact Engineering, 2008, 35(9): 1063-1074. [5] QUEHEILLALT D T, WADLEY H N G. Titanium alloy lattice truss structures[J]. Materials & Design, 2009, 30(6): 1966-1975. [6] KIM G, STERKENBURG R, TSUTSUI W. Investigating the effects of fluid intrusion on Nomex® honeycomb sandwich structures with carbon fiber facesheets[J]. Composite Structures, 2018, 206: 535-549. [7] RODRIGUEZ-RAMIREZ J, CASTANIE B, BOUVET C. Experimental and numerical analysis of the shear nonlinear behaviour of Nomex honeycomb core: Application to insert sizing[J]. Composite Structures, 2018, 193: 121-139. [8] ANSARI M M, CHAKRABARTI A. Ballistic performance of unidirectional glass fiber laminated composite plate under normal and oblique impact[J]. Procedia engineering, 2017, 173: 161-168. [9] XIN S H, WEN H M. A progressive damage model for fiber reinforced plastic composites subjected to impact loading[J]. International Journal of Impact Engineering, 2015, 75: 40-52. [10] PAZ J, DÍAZ J, ROMERA L, et al. Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures[J]. Composite Structures, 2015, 133: 499-507. [11] LURIE S, VOLKOV-BOGORODSKIY D, SOLYAEV Y, et al. Impact behavior of a stiffened shell structure with optimized GFRP corrugated sandwich panel skins[J]. Composite Structures, 2020, 248: 112479. [12] 刘浩洋, 吕超雨, 石姗姗, 等. 芳纶纤维增韧碳纤维增强环氧树脂复合材料-铝蜂窝夹芯结构界面性能和增韧机制[J]. 复合材料学报, 2022, 39(2): 559-567. [13] ZHANG Q, YANG X, LI P, et al. Bioinspired engineering of honeycomb structure-Using nature to inspire human innovation[J]. Progress in Materials Science, 2015, 74: 332-400. [14] HU D, SONG B, WANG D, et al. Experiment and numerical simulation of a full-scale helicopter composite cockpit structure subject to a bird strike[J]. Composite Structures, 2016, 149: 385-397. [15] KHAN L A, MEHMOOD A H. Cost-effective composites manufacturing processes for automotive applications[M]. Lightweight Composite Structures in Transport. Woodhead Publishing, 2016: 93-119. [16] 赵勇. 复合材料船体低速冲击损伤研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [17] 李习习. 复合材料层合板低速冲击损伤与剩余压缩强度研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [18] UKAI S, IZAWA W, OONO N, et al. Charpy impact property related to {100} cleavage fracture in 15CrODS steel[J]. Materials Science and Technology, 2014, 30(13): 1709-1714. [19] MEOLA C, BOCCARDI S, PETRONE G, et al. Infrared thermography to an aluminium foam sandwich structure subjected to low velocity impact tests[J]. Procedia Engineering, 2016, 167: 23-29. [20] ZHANG D, FEI Q, ZHANG P. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor[J]. Composite Structures, 2017, 168: 633-645. [21] DONADON M V, IANNUCCI L, FALZON B G, et al. A progressive failure model for composite laminates subjected to low velocity impact damage[J]. Computers & Structures, 2008, 86(11-12): 1232-1252. [22] WANG J, WAAS A M, WANG H. Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels[J]. Composite Structures, 2013, 96: 298-311. [23] 张俊琪, 刘龙权, 汪海. 薄面板复合材料蜂窝夹层结构冲击试验[J]. 复合材料学报, 2014, 31(4): 1063-1071. [24] SHITTA-BEY O T, CARRUTHERS J J, SOUTIS C, et al. The localized low-velocity impact response of aluminium honeycombs and sandwich panels for occupant head protection: Experimental characterization and analytical modelling[J]. International Journal of Crashworthiness, 2007, 12(5): 549-558. [25] CRUPI V, EPASTO G, GUGLIELMINO E. Low-velocity impact strength of sandwich materials[J]. Journal of Sandwich Structures & Materials, 2011, 13(4): 409-426. [26] XIE Z H, YAN Q, TIAN J, et al. Quasi-static indentation test on composite sandwich panels with foam core[J]. Advanced Materials Research, 2013, 718-720: 214-218. [27] ASHAB A S M, RUAN D, LU G, et al. Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation[J]. Materials & Design, 2015, 74: 138-149. [28] UDE A U, ARIFFIN A K, AZHARI C H. Impact damage characteristics in reinforced woven natural silk/epoxy composite face-sheet and sandwich foam, coremat and honeycomb materials[J]. International Journal of Impact Engineering, 2013, 58: 31-38. [29] XUE X, ZHANG C, CHEN W, et al. Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass[J]. Composite Structures, 2019, 226: 111223. [30] 辛亚军, 张立伟, 刘小蛮, 等. 蜂窝铝夹芯板动态冲击试验研究[J]. 机械强度, 2018, 40(4): 802-809. [31] ARSLAN K, GUNES R. Experimental damage evaluation of honeycomb sandwich structures with Al/B4C FGM face plates under high velocity impact loads[J]. Composite Structures, 2018, 202: 304-312. [32] YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact-An experimental study[J]. International Journal of Impact Engineering, 2015, 75: 100-109. [33] HOU W, ZHU F, LU G, et al. Ballistic impact experiments of metallic sandwich panels with aluminium foam core[J]. International Journal of Impact Engineering, 2010, 37(10): 1045-1055. [34] REN P, TAO Q, YIN L, et al. High-velocity impact response of metallic sandwich structures with PVC foam core[J]. International Journal of Impact Engineering, 2020, 144: 103657. [35] VILLANUEVA G R, CANTWELL W J. The high velocity impact response of composite and FML-reinforced sandwich structures[J]. Composites Science and Technology, 2004, 64(1): 35-54. [36] ZEN S, AVA K, GEDIKLI H, et al. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores[J]. Thin-Walled Structures, 2020, 156: 106989. [37] 谢鑫, 段玥晨, 齐佳旗. 冲击角度对铝蜂窝夹芯板低速冲击性能的影响[J]. 复合材料科学与工程, 2020(4): 19-27. [38] 张立伟. 蜂窝铝夹芯板低速冲击实验与数值模拟研究[D]. 秦皇岛: 燕山大学, 2018. [39] 王晓强, 胡方靓, 徐双喜. 蜂窝夹芯板的抗高速冲击性能研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(4): 709-714. [40] LIU J, CHEN W, HAO H, et al. Numerical study of low-speed impact response of sandwich panel with tube filled honeycomb core[J]. Composite Structures, 2019, 220: 736-748. [41] GUNES R, ARSLAN K. Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials, 2016, 18(1): 95-112. [42] 齐佳旗, 段玥晨, 李成, 等. 低速冲击下铝蜂窝夹层板的动态响应研究[J]. 玻璃钢/复合材料, 2019(5): 5-11. [43] ZHANG D, JIANG D, FEI Q, et al. Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact[J]. Finite Elements in Analysis and Design, 2016, 117: 21-30. [44] WOWK D, REYNO T, YEUNG R, et al. An experimental and numerical investigation of core damage size in honeycomb sandwich panels subject to low-velocity impact[J]. Composite Structures, 2020, 254: 112739. [45] FAN J, GUAN Z, CANTWELL W J. Modeling perforation in glass fiber reinforced composites subjected to low velocity impact loading[J]. Polymer composites, 2011, 32(9): 1380-1388. [46] SHARUNOV MYKOLA. 复合材料蜂窝夹芯板低速冲击损伤分析[D]. 哈尔滨: 哈尔滨工业大学, 2019. [47] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6): 1352-1363. [48] ZHANG X, XU F, ZANG Y, et al. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact[J]. Composite Structures, 2020, 236: 111882. [49] CHATURVEDI R, TRIKHA M, SIMHA K R Y. Impact penetration through spacecraft honeycomb panels analytical, numerical and experimental study[J]. Materials Today: Proceedings, 2020, 21: 1050-1058. [50] MINDÁK M, PELAGIĆ Z, PASTOREK P, et al. Finite element modelling of high velocity impact on plate structures[J]. Procedia Engineering, 2016, 136: 162-168. [51] KOLOPP A, ALVARADO R A, RIVALLANT S, et al. Modeling impact on aluminium sandwich including velocity effects in honeycomb core[J]. Journal of Sandwich Structures & Materials, 2013, 15(6): 733-757. [52] BUITRAGO B L, SANTIUSTE C, SáNCHEZ-SÁEZ S, et al. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact[J]. Composite Structures, 2010, 92(9): 2090-2096. [53] HOU J P, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates[J]. Composites Science and Technology, 2000, 60(2): 273-281. [54] FELI S, POUR M H N. An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact[J]. Composites Part B: Engineering, 2012, 43(5): 2439-2447. [55] TANG E, YIN H, CHEN C, et al. Simulation of CFRP/aluminum foam sandwich structure under high velocity impact[J]. Journal of Materials Research and Technology, 2020, 9(4): 7273-7287. [56] CORBETT G G, REID S R, JOHNSON W. Impact loading of plates and shells by free-flying projectiles: A review[J]. International Journal of Impact Engineering, 1996, 18(2): 141-230. [57] SUN G, CHEN D, WANG H, et al. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations[J]. International Journal of Impact Engineering, 2018, 122: 119-136. [58] GHALAMI-CHOOBAR M, SADIGHI M. Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber-metal laminates skins and polyurethane core[J]. Aerospace Science and Technology, 2014, 32(1): 142-152. [59] RAHIMIJONOUSH A, BAYAT M. Experimental and numerical studies on the ballistic impact response of titanium sandwich panels with different facesheets thickness ratios[J]. Thin-Walled Structures, 2020, 157: 107079. [60] ABBASI M, NIA A A. High-velocity impact behavior of sandwich structures with AL faces and foam cores-Experimental and numerical study[J]. Aerospace Science and Technology, 2020, 105: 106039. [61] HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials[J]. Journal of Applied Physics, 1969, 40(6): 2490-2499. [62] DAR U A, ZHANG W, XU Y. Modeling the perforation failure of honeycomb sandwich structures through numerical homogenization[C]//Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST). IEEE, 2013. [63] KAMRAN M, WU F, XUE P, et al. New numerical modeling for impact dynamics behavior of composite honeycomb sandwich structures[J]. Journal of Aerospace Engineering, 2020, 33(4): 04020016. |