[1] KOIZUMI M. The concept of FGM. Ceramic transitions[J]. Functionally Gradient Materials, 1993, 34: 3-10. [2] 仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展[J]. 力学进展, 2010, 40(5): 528-541. [3] 李世荣, 高颖, 张靖华. 功能梯度与均匀圆板静动态解之间的相似转换关系[J]. 固体力学学报, 2011, 32(s1): 120-126. [4] YANG J, SHEN H S. Non-linear analysis of functionally graded plates under transverse and in plane loads[J]. International Journal of Non-linear Mechanics, 2003, 38(4): 467-482. [5] LI Q L, LUAN W D, ZHU Z Q. Shooting method for free vibration of FGM Reissner-Mindlin circular plates resting on elastic foundation in thermal environments[J]. Journal of Vibroengineering, 2017, 19(6): 4423-4439. [6] NGUYEN H N, TRAN T, VINH P V. A refined simple first-order shear deformation theory for static bending and free vibration analysis of advanced composite plates[J]. Materials, 2019, 12(15): 2385. [7] KERMANI I D, GHAYOUR M, MIRDAMADI H R. Free vibration analysis of multi-directional functionally graded circular and annular plates[J]. Journal of Mechanical and Technology, 2012, 26(11): 3399-3410. [8] REDDY J N, WAANG C M, KITIPOMCHAI S. Axisymmetric bending of functionally graded circular and annular plates[J]. European Journal of Mechanics-A/Solids, 1999, 18(2): 185-199. [9] MANTARI J L. Free vibration of advanced composite plates resting on elastic foundations based on refined non-polynomial theory[J]. Meccanica, 2015, 50: 2369-2390. [10] 马连生, 王铁军. 不同理论下圆板特征值之间的解析关系[J]. 应用数学和力学, 2006, 27(3): 253-259. [11] 万泽青, 李世荣, 李秋全. 功能梯度Levinson圆板弯曲解的均匀化和经典化表示[J]. 工程力学, 2015, 32(1): 10-16, 35. [12] 周平, 沈纪苹, 姚林泉, 等. 基于Levinson三阶剪切理论的功能梯度轴对称圆板特征值问题求解[J]. 力学季刊, 2017, 38(2): 215-229. [13] ABRATE S. Functionally graded plates behave like homogeneous plates[J]. Composites Part B: Engineering, 2008, 39(1): 151-158. [14] ZHANG D G. Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory[J]. Meccanica, 2014, 49: 283-293. [15] 李清禄, 王文涛, 杨静宁. 材料属性温度相关变厚度FGM圆板自由振动DQM求解[J]. 振动与冲击, 2018, 37(10): 218-224. |