[1] 张文超, 常皓, 王文建, 等. 铝基碳化硅复合材料电火花高效加工仿真研究[J]. 电加工与模具, 2021(1): 7-10. [2] ZHOU L, CUI C, ZHANG P F,et al. Finite element and experimental analysis of machinability during machining of high-volume fraction SiCp/Al composites[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8): 1935-1944. [3] 李通, 王全兆, 张绪胜, 等. 碳化硅颗粒增强铝基复合材料的超声检测[J/OL]. 热加工工艺: 1-4[2021-07-20]. DOI: 10.14158/j.cnki.1001-3814.20200268. [4] 张勇强, 汪久根, 洪玉芳. 磨粒磨损的模型化分析[J]. 润滑与密封, 2017, 42(11): 13-18, 63. [5] 史尧臣, 刘红岩, 张学忱, 等. 超声振动钻削减摩机制研究与试验分析[J]. 机床与液压, 2020, 48(4): 43-45, 49. [6] 蒋立坤, 胡守琦, 孙晓飞, 等. 微细孔超声振动钻削加工方法研究[J]. 新技术新工艺, 2020(9): 66-71. [7] LOTFI M, AMINI S. Experimental and numerical study of ultrasonically-assisted drilling[J]. Ultrasonics, 2017, 75: 185-193. [8] MIKHAILOVA N, ONAWUMI P Y, VOLKOV G, et al. Ultrasonically assisted drilling in marble[J]. Journal of Sound and Vibration, 2019, 460: 114880. [9] 张学忱, 吕康, 史尧臣, 等. 0Cr17Ni4Cu4Nb超声振动钻削的钻削力和切屑研究[J]. 机床与液压, 2018, 46(19): 53-55, 66. [10] 李向军, 胡亚辉, 郑清春, 等. 超声振动对皮质骨钻削温度的影响研究[J]. 机床与液压, 2019, 47(1): 5-8. [11] 张冬梅. 超声振动钻削复合材料的表面质量研究[J]. 焦作大学学报, 2017, 31(2): 76-78. [12] KADIVAR M A, AKBARI J, YOUSEFI R, et al. Investigating the effects of vibration method on ultrasonic-assisted drilling of Al/SiCp metal matrix composites[J]. Robotics and Computer Integrated Manufacturing, 2014, 30(3): 344-350. [13] 邱建平, 陈金祥, 郝浩杰. 复合材料超声振动低损伤制孔技术研究[J]. 机械科学与技术, 2020, 39(3): 484-492. [14] MOGHADDAS M A. Modeling and optimization of thrust force, torque, and surface roughness in ultrasonic-assisted drilling using surface response methodology[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(9-10): 2909-2923. [15] TIAN Y J, ZOU P, KANG D, et al. Study on tool wear in longitudinal-torsional composite ultrasonic vibration-assisted drilling of Ti-6Al-4V alloy[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(7-8): 1989-2002. [16] 许幸新, 张晓辉, 刘传绍, 等. SiC颗粒增强铝基复合材料的超声振动钻削试验研究[J]. 中国机械工程,2010, 21(21): 2573-2577. |