[1] 冯鹏. 复合材料在土木工程中的发展与应用[J]. 玻璃钢/复合材料, 2014(9): 99-104.
[2] 姜浩, 朱思宇. 玄武岩纤维筋的性能及应用研究综述[J]. 四川建材, 2017, 43(8): 1-2.
[3] 徐新生. FRP筋力学性能及其混凝土梁受弯性能研究[D]. 天津: 天津大学, 2007.
[4] 谷圣杰, 范兴朗, 荣华, 等. 复材纤维筋混凝土梁抗弯力学性能研究[J]. 工业建筑, 2020(50): 151-155.
[5] 孔祥清, 于洋, 高化东, 等. FRP筋和钢筋混合配筋混凝土梁受弯性能数值模拟及理论分析[J]. 玻璃钢/复合材料, 2018(1): 38-44.
[6] 刘宗全, 岳清瑞, 李荣, 等. 全FRP筋混凝土梁斜截面承载力研究进展[J]. 玻璃钢/复合材料, 2017(1): 109-115, 135.
[7] 黄华, 郝润奇, 黄敏. FRP筋混凝土结构的研究现状分析[J]. 玻璃钢/复合材料, 2018(7): 108-116.
[8] 付莹, 孔祥清, 于洋, 等. BFRP筋/钢筋混合配筋混凝土梁抗弯试验与有限元分析[J]. 混凝土与水泥制品, 2020(10): 45-50.
[9] 韩娟, 刘伟庆, 方海. 纤维增强树脂基复合材料在土木基础设施领域中的应用[J]. 南京工业大学学报(自然科学版), 2020, 42(5): 543-554.
[10] 梅葵花, 徐进. FRP简介及其在桥梁工程中的应用综述[J]. 中外公路, 2010, 30(4): 247-250.
[11] 蔡涛, 江世永, 姚未来, 等. 纤维增强复合材料加固钢筋混凝土梁徐变的研究进展[J]. 合成纤维, 2018, 47(5): 35-41.
[12] NAJAFABADI E P, BAZLI M, ASHRAFI H, et al. Effect of applied stress and bar characteristics on the short-term creep behavior of FRP bars[J]. Construction and Building Materials, 2018, 171: 960-968.
[13] SHI J Z, WANG X, WU Z S, et al. Creep behavior enhancement of a basalt fiber-reinforced polymer tendon[J]. Construction and Building Materials, 2015, 94: 750-757.
[14] 李建辉, 邓宗才. FRP应力松弛及徐变性能的研究近展[J]. 玻璃钢/复合材料, 2007(3): 56-59.
[15] 陈伟, 杨勇新, 李彪. 纤维增强复合材料长期徐变性能研究[C]//中国硅酸盐学会玻璃钢分会. 第二十一届全国玻璃钢/复合材料学术年会论文集. 黑龙江哈尔滨: 中国硅酸盐学会, 2016: 41-45.
[16] VAS L M, BAKONYI P. Creep failure strain estimation of glass fibre/polypropylene composites based on short-term tests and Weibull characterisation[J]. Journal of Reinforced Plastics and Composites, 2013, 32: 34-41.
[17] JEON J, KIM J, MULIANA A. Modeling time-dependent and inelastic response of fiber reinforced polymer composites[J]. Computational Materials Science, 2013, 70: 37-50.
[18] TANKS J, RADER K, SHARP S, et al. Accelerated creep and creep-rupture testing of transverse unidirectional carbon/epoxy lamina based on the stepped isostress method[J]. Composite Structures, 2017, 159: 455-462.
[19] ZOU P X W. Long-term deflection and cracking behavior of concrete beams prestressed with carbon fiber-reinforced[J]. Journal of Composites for Construction, 2003, 7(3): 187-193.
[20] SOKAIRGE H, ELGABBAS F, RASHAD A, et al. Long-term creep behavior of basalt fiber reinforced polymer bars[J]. Construction and Building Materials, 2020, 260: 1-9.
[21] MAKSIMOV R D, PLUME E. Long-term creep of hybrid aramid/glass-fiber-reinforced plastics[J]. Mechanics of Composite Materials, 2001, 37(4): 271-280.
[22] WANG X, SHI J Z, LIU J X, et al. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application[J]. Materials and Design, 2014, 59: 558-564.
[23] PERRELLA M, BERARDI V P, CRICRÌ G, et al. Experimental evaluation of the long-term creep deformations of epoxy resin[J]. Procedia Structural Integrity, 2019, 24: 601-611.
[24] EMARA M, TORRES L, BAENA M, et al. Effect of sustained loading and environmental conditions on the creep behavior of an epoxy adhesive for concrete structures strengthened with CFRP laminates[J]. Composites Part B: Engineering, 2017, 129: 88-96.
[25] YANG D, ZHANG J W, SONG S T, et al. Experimental investigation on the creep property of carbon fiber reinforced polymer tendons under high stress levels[J]. Materials, 2018, 11(11): 1-10.
[26] WANG X, SHI J Z, WU Z S, et al. Creep strain control by pretension for basalt fiber-reinforced polymer tendon in civil applications[J]. Materials and Design, 2016, 89: 1270-1277.
[27] BENMOKRANE B, BROWN V L, MOHAMED K, et al. Creep-rupture limit for GFRP bars subjected to sustained loads [J]. Journal of Composites for Construction, 2019, 23(6): 1-7.
[28] Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP): ACI 4401R—15[S]. Michigan: American Concrete Institute, 2015.
[29] Canadian highway bridge design code: CAN/CSA-S6—06[S]. Toronto: Canadian Standards Association, 2006.
[30] ROSSINI M, SAQAN E, NANNI A. Prediction of the creep rupture strength of GFRP bars[J]. Construction and Building Materials, 2019, 227: 1-11.
[31] 李国平. 预应力混凝土结构设计原理[M]. 第2版. 北京: 人民交通出版社, 2009.
[32] SHI J Z, WANG X, HUANG H, et al. Relaxation behavior of prestressing basalt fiber-reinforced polymer tendons considering anchorage slippage[J]. Journal of Composite Materials, 2016, 51: 1-10.
[33] 陶学康, 孟履祥, 关建光, 等. 纤维增强塑料筋在预应力混凝土结构中的应用[J]. 建筑结构, 2004, 34(4): 63-71.
[34] SAADATMANESH H, TANNOUS F E. Long-term behavior of aramid fiber reinforced plastic (AFRP) tendons[J]. ACI Materials Journal, 1999, 96: 297-305.
[35] D′ANTINO T, PISANI M A. Long-term behavior of GFRP reinforcing bars[J]. Composite Structures, 2019, 227: 1-10.
[36] SHI J Z, WANG X, WU Z S, et al. Relaxation behavior of BFRP tendon for prestressing application[C]//International Conference on Performance-based and Life-cycle Structural Engineering. China:2015.
[37] 孟履祥, 徐福泉, 关建光, 等. 碳纤维筋(CFRP筋)松弛损失试验研究[J]. 施工技术, 2005, 34(7): 40-41, 53.
[38] ATUTIS M, VALIVONIS J, ATUTIS E. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers. Part Ⅱ: Stress relaxation phenomenon[J]. Composite Structures, 2018, 202: 344-354.
[39] ZOU P X W. Long-term properties and transfer length of fiber-reinforced polymers[J]. Journal of Composites for Construction, 2003, 7(1): 10-19.
[40] SAADATMANESH H, TANNOUS F E. Relaxation, creep, and fatigue behavior of carbon fiber reinforced plastic tendons[J]. ACI Materials Journal, 1999, 96: 143-153.
[41] SAADATMANESH H, TANNOUS F E. Long-term behavior of aramid fiber reinforced plastic (ARFP) tendons[J]. ACI Materials Journal, 1999, 96(3): 291-299.
[42] 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.
[43] 朱虹, 吕志涛, 张继文, 等. AFRP筋松弛性能的试验研究[J]. 工业建筑, 2006, 36(7): 62-64, 94.
[44] 詹界东, 杜修力, 王作虎. FRP筋长期力学性能研究进展[J]. 玻璃钢/复合材料, 2009(6): 77-80.
[45] LOU T J, KARAVASILIS T L. Time-dependent assessment and deflection prediction of prestressed concrete beams with unbonded CFRP tendons[J]. Composite Structures, 2018, 194: 365-376.
[46] YOUAKIM S A, KARBHARI V M. An approach to determine long-term behavior of concrete members prestressed with FRP tendons[J]. Construction and Building Materials, 2007, 21(5): 1052-1060.
[47] LOU T J, KARAVASILIS T L. Numerical evaluation of prestressed steel-concrete composite girders with external FRP or steel tendons[J]. Journal of Constructional Steel Research, 2019, 162: 1-12.
[48] LOU T J, LOPES S M R, LOPES A V. Time-dependent behavior of concrete beams prestressed with bonded AFRP tendons[J]. Composites Part B: Engineering, 2016, 97: 1-8.
[49] LOU T J, LOPES S M R, LOPES A V. A finite element model to simulate long-term behavior of prestressed concrete girders[J]. Finite Elements in Analysis and Design, 2014, 81: 48-56.
[50] LOU T J, LOPES S M R, LOPES A V. Nonlinear and time-dependent analysis of continuous unbonded prestressed concrete beams[J]. Computers & Structures, 2013, 119: 166-176.
[51] LOU T J, XIANG Y Q. Finite element modeling of concrete beams prestressed with external tendons[J]. Engineering Structures, 2006, 28(14): 1919-1926.
[52] ZOU P X W. Theoretical study on short-term and long-term deflections of fiber reinforced polymer prestressed concrete beams[J]. Journal of Composites for Construction, 2003, 7(4): 285-291.
[53] ATUTIS M, KAWASHIMA S. Analysis of flexural concrete beams prestressed with basalt composite bars. Analytical-experimental approach[J]. Composite Structures, 2020, 243: 1-15.
[54] JIANG S Y, YAO W L, CHEN J, et al. Time dependent behavior of FRP-strengthened RC beams subjected to preload: Experimental study and finite element modeling [J]. Composite Structures, 2018, 200: 599-613.
[55] 祁德庆, 胡于明, 薛伟辰. 纤维塑料筋混凝土梁长期性能研究进展[J]. 公路交通科技, 2008, 25(9): 103-106, 111.
[56] BRAIMAH A, GREEN M, SOUDKI K. Long-term behavior of CFRP prestressed concrete beams[J]. PCI Journal, 2003, 48: 1-11.
[57] ZAWAM M, SOUDKI K, WEST J S. Factors affecting the time-dependent behaviour of GFRP prestressed concrete beams[J]. Journal of Building Engineering, 2019, 24: 1-8.
[58] ZAWAM M, SOUDKI K, WEST J S. Effect of prestressing level on the time-dependent behavior of GFRP prestressed concrete beams[J]. Journal of Composites for Construction, 2017, 21(4): 1-10.
[59] ZAWAM M. Long-term behaviour of GFRP prestressed concrete beams[D]. Canada: University of Waterloo, 2015.
[60] 公路预应力混凝土桥梁设计规范: JTG D62—2004[S]. 北京: 中华人民共和国交通部, 2004.
[61] 混凝土结构设计规范: GB 50010—2002[S]. 北京: 中国建筑工业出版社, 2002.
[62] Concrete structures: AS 3600—2009[S]. Sydney: Standards Australia Limited, 2009.
[63] Building code requirements for structural concrete and commentary: ACI 318—14[S]. Michigan: American Concrete Institute, 2014.
[64] 刘婷, 孙天荣. 预应力混凝土梁时随全过程分析[J]. 建筑科学, 2016, 32(9): 55-60. |