[1] HASANIN M S, MOUSTAFA G O. New potential green, bioactive and antimicrobial nanocomposites based on cellulose and amino acid[J]. International Journal of Biological Macromolecules, 2020, 144: 441-448. [2] HASANIN M, EL-HENAWY A, EISA W H, et al. Nano-amino acid cellulose derivatives: Eco-synthesis, characterization, and antimicrobial properties[J]. International Journal of Biological Macromolecules, 2019, 132: 963-969. [3] MUN S, MANIRUZZAMAN M, KO H U, et al. Preparation and characterisation of cellulose ZnO hybrid film by blending method and its glucose biosensor application[J]. Materials Technology, 2014, 30(B3): B150-B154. [4] KICKELBICK G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J]. Progress in Polymer Science, 2003, 28(1): 83-114. [5] MENG H, CHANG C, NA P, et al. Structure and properties of hydroxyapatite/cellulose nanocomposite films[J]. Carbohydrate Polymers, 2012, 87(4): 2512-2518. [6] SHCHIPUNOV Y, POSTNOVA I. Cellulose mineralization as a route for novel functional materials[J]. Advanced Functional Materials, 2018, 28(27): 1705042. [7] MA J, WANG J, AI X, et al. Biomimetic self-assembly of apatite hybrid materials: From a single molecular template to bi-/multi-molecular templates[J]. Biotechnology Advances, 2014, 32(4): 744-760. [8] HAMZA S. MHD flow of cellulose derivatives and dilute suspensions rheology of its nanocrystals[J]. American Journal of Fluid Dynamics, 2017, 7(1): 23-40. [9] 蔡杰. 纤维素科学与材料[M]. 北京:化学工业出版社, 2015. [10] NECHYPORCHUK O, BELGACEM M N, BRAS J. Production of cellulose nanofibrils: A review of recent advances[J]. Industrial Crops and Products, 2016, 93: 2-25. [11] LIEBERT T, SCHILLER F, JENA D. Cellulose solvents-remarkable history, bright future[J]. Acs Symposium, 2010, 1033: 3-54. [12] FANG Z, LI B, LIU Y, et al. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films[J]. Matter, 2020, 2(4): 1000-1014. [13] CAI J, ZHANG L. Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions[J]. Macromolecular Bioscience, 2005, 5(6): 539-548. [14] 段博, 涂虎, 张俐娜. 可持续高分子-纤维素新材料研究进展[J]. 高分子学报, 2020, 51(1): 76-96. [15] 姚一军, 王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 201-211. [16] TAVAKOLIAN M, JAFARI S M, VEN T. A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials[J]. Nano-Micro Letters, 2020, 12(1):73. [17] DONNALOJA F, JACCHETTI E, SONCINI M, et al. Natural and synthetic polymers for bone scaffolds optimization[J]. Polymers, 2020, 12(4): 905. [18] DU H S, LIU W, ZHANG M M, et al. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications-science direct[J]. Carbohydrate Polymers, 2019, 209: 130-144. [19] YAN G H, CHEN B L, ZENG X H, et al. Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications[J]. Carbohydrate Polymers, 2020, 244: 116492. [20] DOELKER E. Cellulose derivatives[J].Advances in Polymer Science, 1993, 107: 199-265. [21] IBRAHIM M, LABAKI M, GIRAUDON J M, et al. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review[J]. Journal of Hazardous Materials, 2019, 383: 121139. [22] NARWADE V N, KHAIRNAR R S, et al. Cobalt adsorption on the nano-hydroxyapatite matrix: isotherm and kinetic studies[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2017, 65(2): 131-137. [23] SALAMA A, EL-SAKHAWY M. Preparation of polyelectrolyte/calcium phosphate hybrids for drug delivery application[J]. Carbohydrate Polymers, 2014, 113: 500-506. [24] SARKAR C, CHOWDHURI A R, KUMAR A, et al. One pot synthesis of carbon dots decorated carboxymethyl cellulose-hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing[J]. Carbohydrate Polymers, 2018, 181: 710-718. [25] LIU J M, YU P, WANG D Q, et al. Wood-derived hybrid scaffold with highly anisotropic features on mechanics and liquid transport toward cell migration and alignment[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17969-17978. [26] BÄUERLEIN E, PICKETTHEAPS J. Handbook of biomineralization: Biological aspects and structure formation[M]. New Jersey: Wiley, 2008: 109-117. [27] 崔福斋等. 生物矿化[M]. 北京: 清华大学出版社, 2007. [28] MANN S. Biomineralization: Principles and concepts in bioinorganic materials chemistry[M]. Oxford: Oxford University Press, 2002. [29] NUDELMAN F, SOMMERDIJK N. Biomineralization as an inspiration for materials chemistry[J]. Angewandte Chemie International Edition, 2012, 51(27): 6582-6596. [30] NGE T T, SUGIYAMA J. Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid[J]. Journal of Biomedical Materials Research Part A, 2007, 81A(1): 124-134. [31] WEI G B, MA P X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering-science direct[J]. Biomaterials, 2004, 25(19): 4749-4757. [32] WANG Y, LI L, GUO S. Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro[J]. Polymer Degradation and Stability, 2010, 95(2): 207-213. [33] SADAT-SHOJAI M, KHORASANI M T, DINPANAH-KHOSHDARGI E, et al. Synthesis methods for nanosized hydroxyapatite with diverse structures[J]. Acta Biomaterialia, 2013, 9(8): 7591-7621. [34] SI J, CUI Z, WANG Q, et al. Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(-caprolactone)/nanocellulose fibers[J]. Carbohydrate Polymers, 2016, 143: 270-278. [35] TANAHASHI M, MATSUDA T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid[J]. Journal of Biomedical Materials Research, 2015, 34(3): 305-315. [36] FRAGAL E H, CELLET T S P, FRAGAL V H, et al. Biomimetic nanocomposite based on hydroxyapatite mineralization over chemically modified cellulose nanowhiskers: An active platform for osteoblast proliferation[J]. International Journal of Biological Macromolecules, 2019, 125: 133-142. [37] GORGIEVA S, GIRANDON L, KOKOL V. Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells[J]. Materials Science and Engineering C: Materials for Biological Applications, 2017, 73(4): 478-489. [38] CHEN J, ZHANG T, HUA W, et al. 3D Porous poly(lactic acid)/regenerated cellulose composite scaffolds based on electrospun nanofibers for biomineralization[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2020, 585: 124048. [39] BOUJAADY H E, RHILASSI A E, BENNANI-ZIATNI M, et al. Removal of a textile dye by adsorption on synthetic calcium phosphates[J]. Desalination, 2011, 275(1-3): 10-16. [40] SALAMA A. Functionalized hybrid materials assisted organic dyes removal from aqueous solutions[J]. Environmental Nanotechnology, Monitoring and Management, 2016, 6:159-163. [41] SALAMA A. New sustainable hybrid material as adsorbent for dye removal from aqueous solutions[J]. J Colloid Interface, 2017, 487: 348-353. [42] GOPAKUMAR D A, PASQUINI D, HENRIQUE M A, et al. Meldrum′s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal [J]. ACS Sustainable Chemistry & Engineering, 2018, 5(2): 2026-2033. [43] HOKKANEN S, REPO E, WESTHOLM L J, et al. Adsorption of Ni2+, Cd2+, PO3-4 and NO-3 from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite[J]. Chemical Engineering Journal, 2014, 252: 64-74. [44] HOKKANEN S, BHATNAGAR A, REPO E, et al. Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution[J]. Chemical Engineering Journal, 2016, 283: 445-452. [45] NÚ$\bar{N}$-EZ D, CÁCERES R, IDE W, et al. An ecofriendly nanocomposite of bacterial cellulose and hydroxyapatite efficiently removes lead from water[J]. International Journal of Biological Macromolecules, 2020, 165: 2711-2720. [46] SMICIKLAS I, ONJIA A, RAIEVI S, et al. Factors influencing the removal of divalent cations by hydroxyapatite[J]. Journal of Hazardous Materials, 2008, 152(2): 876-884. [47] SUZUKI T, ISHIGAKI K, MIYAKE M. Synthetic hydroxyapatites as inorganic cation exchangers. Part 3.—Exchange characteristics of lead ions (Pb2+)[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984, 80(11): 3157. [48] NARWADE V N, KHAIRNAR R S, KOKOL V. In-situ synthesised hydroxyapatite-loaded films based on cellulose nanofibrils for phenol removal from wastewater[J]. Cellulose, 2017, 24(11): 4911-4925. [49] LANGER R. Drug delivery and targeting[J]. Nature, 1998, 392(6679 Suppl): 5-10. [50] SARAVANAKUMAR G, JO D G, PARK J H. Polysaccharide-based nanoparticles: A versatile platform for drug delivery and biomedical imaging[J]. Current Medicinal Chemistry, 2012, 19(19): 3212-3229. [51] BARCLAY T G, DAY C M, PETROVSKY N, et al. Review of polysaccharide particle-based functional drug delivery[J]. Carbohydrate Polymers, 2019, 221: 94-112. [52] SALAMA A. Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release[J]. International Journal of Biological Macromolecules, 2018, 108: 471-476. [53] WANG N, WANG Y, GUO T, et al. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (Ⅲ) and Escherichia coli[J]. Biosensors & Bioelectronics, 2016, 85: 68-75. [54] SARKAR C, CHOWDHURI A R, GARAI S, et al. Three-dimensional cellulose-hydroxyapatite nanocomposite enriched with dexamethasone loaded metal-organic framework: A local drug delivery system for bone tissue engineering[J]. Cellulose, 2019, 26(12): 7253-7269. [55] COLLINS M N, REN G, YOUNG K, et al. Scaffold fabrication technologies and structure/function properties in bone tissue engineering[J]. Advanced Functional Materials, 2021,31(21): 2010609. [56] BRYDONE A S, MEEK D, MACLAINE S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering[J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2010, 224(12): 1329-1343. [57] SCOTT J, HOLLISTER. Porous scaffold design for tissue engineering[J]. Nature Materials, 2005, 5(7): 590-590. [58] AMINI A R, LAURENCIN C T, NUKAVARAPU S P. Bone tissue engineering: Recent advances and challenges[J]. Critical Reviews in Biomedical Engineering, 2012, 40(5): 363-408. [59] JODATI H, YıLMAZ B, EVIS Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features[J]. Ceramics International, 2020, 46(10): 15725-15739. [60] GRITSCH L, MAQBOOL M, MOURIO V, et al. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: Copper and strontium[J]. Journal of Materials Chemistry B, 2019, 7(40): 6109-6124. [61] CHINTA M L, VELIDANDI A, PABBATHI N P P, et al. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review[J]. Int J Biol Macromol, 2021, 175: 495-515. [62] 晋艳茹, 贾庆明, 陕绍云. 羟基磷灰石/纤维素复合材料在骨组织工程中的研究进展[J]. 材料导报, 2019, 33(12A): 4008-4015. [63] WU M, WU P, XIAO L, et al. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo[J]. International Journal of Biological Macromolecules, 2020, 162: 1627-1641. [64] LUZ E P C G, CHAVES P H S, VIEIRA L D A P, et al. In vitro degradability and bioactivity of oxidized bacterial cellulose-hydroxyapatite composites[J]. Carbohydrate Polymers, 2020, 237: 116-174. |