[1] 张代军, 邢宇, 包建文, 等. 环氧树脂交联结构对固化动力学的影响[J]. 复合材料科学与工程, 2021(7): 93-98. [2] 肖剑雄, 周向, 申政. 高速永磁电机转子碳纤维护套张力缠绕仿真分析[J]. 复合材料科学与工程, 2022(1): 68-72. [3] 梁恒亮, 周洪飞, 陈静. 耐高温聚酰亚胺树脂复合材料固化封装技术研究[J]. 复合材料科学与工程, 2022(1): 112-116. [4] 葛恩德, 尚艳伟, 刘学术, 等. 装配间隙对复合材料构件弯曲疲劳性能的影响研究[J]. 复合材料科学与工程, 2021(9): 99-106. [5] TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates[J]. Composites Part A, 2015, 71(4): 212-226. [6] ABRATE S. Impact on laminated composite materials[J]. Applied Mechanics Reviews, 1991, 44(4): 155-190. [7] 欧阳俊杰, 王付胜, 孔繁淇, 等. 湿/热环境对环氧树脂复合材料冲击后压缩剩余强度的影响[J]. 复合材料科学与工程, 2021(9): 31-37. [8] THORSSON S I, SRINGERI S P, WAAS A M, et al. Experimental investigation of composite laminates subject to low-velocity edge-on impact and compression after impact[J]. Composite Structures, 2018, 186(2): 335-346. [9] RIVALLANT S, BOUVET C, ABDALLAH E A, et al. Experimental analysis of CFRP laminates subjected to compression after impact: The role of impact-induced cracks in failure[J]. Composite Structures, 2014, 111(5): 147-157. [10] TOPAC O T, GOZLUKLU B, GURSES E, et al. Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact[J]. Composites Part A: Applied Science and Manufacturing, 2017, 92(1): 167-182. [11] GLISZCZYNSKI A. Numerical and experimental investigations of the low velocity impact in GFRP plates[J]. Composites Part B: Engineering, 2018, 138(1): 181-193. [12] SUN X C, HALLETT S R. Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations[J]. International Journal of Impact Engineering, 2017, 109(11): 178-195. [13] ARUMUGAM V, SARAVANAKUMAR K, SANTULLI C. Damage characterization of stiffened glass-epoxy laminates under tensile loading with acoustic emission monitoring[J]. Composites Part B: Engineering, 2018, 147(8): 22-32. [14] AVVA V S, PADMANABHA H L. Compressive residual strength prediction in fiber-reinforced laminated composites subjected to impact loads[C]//Proceedings of the 6th International Conference on Fracture (ICF6). New Delhi: Elsevier, 1984: 2897-2907. [15] XIONG Y, POON C, STRAZNICKY P V, et al. A prediction method for the compressive strength of impact damaged composite laminates[J]. Composite Structures, 1995, 30(4): 357-367. [16] HORTON R, WHITEHEAD R. Damage tolerance of composites: AFWAL-TR-87-3030[S]. Washington: FAA, 1998. [17] HOSUR M, MURTHY C R, RAMURTHY T. Compression after impact testing of carbon fibre reinforced plastic laminates[J]. Journal of Composites Technology & Research, 1999, 21(2): 51-64. [18] MAIO L, MONACO E, RICCI F, et al. Simulation of low velocity impact on composite laminates with progressive failure analysis[J]. Composite Structures, 2013, 103(9): 75-85. [19] LI N, CHEN P. Failure prediction of T-stiffened composite panels subjected to compression after edge impact[J]. Composite Structures, 2017, 162(2): 210-226. [20] SOTO A, GONZÁLEZ E V, MAIMÍ P, et al. Low velocity impact and compression after impact simulation of thin ply laminates[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109(6): 413-427. [21] TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2015, 71(4): 212-226. [22] 刘晓军, 战丽, 邹爱玲, 等. 纤维增强复合材料层间增韧技术研究进展[J]. 复合材料科学与工程, 2022(1): 117-128. [23] FU Y, XIONG J, LUO C, et al. Static mechanical properties of hybrid RTM-made composite Ⅰ-and Π-beams under three-point flexure[J]. Chinese Journal of Aeronautics, 2015, 28(3): 903-913. [24] CMH-17协调委员会, 汪海, 沈真. 复合材料手册[M]. 上海: 上海交通大学出版社, 2015: 537. [25] CHEN F, YAO W, JIANG W. Experimental and simulation investigation on BVID and CAI behaviors of CFRP laminates manufactured by RTM technology[J]. Engineering Computations, 2020, 38(5): 2252-2273. [26] MANDELBROT B B. The fractal geometry of nature[M]. New York: W.H. Freeman and Company, 1983: 109. [27] ZHANG C, CHEN Y, YAO W. The use of fractal dimensions in the prediction of residual fatigue life of pre-corroded aluminum alloy specimens[J]. International Journal of Fatigue, 2014, 59(3): 282-291. [28] KOTOWSKI P. Fractal dimension of metallic fracture surface[J]. International Journal of Fracture, 2006, 141(1-2): 269-286. [29] CHANG Q, CHEN D L, RU H Q, et al. Three-dimensional fractal analysis of fracture surfaces in titanium-iron particulate reinforced hydroxyapatite composites: Relationship between fracture toughness and fractal dimension[J]. Journal of Materials Science, 2011, 46(18): 6118-6123. [30] MOLENT L, SPAGNOLI A, CARPINTERI A, et al. Using the lead crack concept and fractal geometry for fatigue lifing of metallic structural components[J]. International Journal of Fatigue, 2017, 102(1): 214-220. [31] JIANG W, YAO W, QI W, et al. Study on the fractal dimension and evolution of matrix crack in cross-ply GFRP laminates[J]. Theoretical and Applied Fracture Mechanics, 2020, 107(6): 102478. [32] ZHOU A, FAN Y, CHENG W, et al. A fractal model to interpret porosity-dependent hydraulic properties for unsaturated soils[J]. Advances in Civil Engineering, 2019, 2019(1): 1-13. |