[1] ZHANG Z K, HU H, XU B G. An elastic analysis of a honeycomb structure with negative Poisson's ratio[J]. Smart Materials & Structures, 2013, 22(8): 084006. [2] ZHENG Z K, HU H, LIU S R, et al. Study of an auxetic structure made of tubes and corrugated sheets[J]. Physica Status Solidi (B), 2013, 250(10): 1996-2001. [3] LARSEN U, SIGNUND O, BOUWSTA S. Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio[J]. Journal of Microelectromechanical Systems, 1997, 6(2): 99-106. [4] PRALL D, LAKES R S. Properties of a chiral honeycomb with a poisson's ratio of—1[J]. International Journal of Mechanical Sciences, 1997, 39(3): 305-307. [5] THEOCARIS P S, STAVROULAKIS G E, PANAGIOTOPOULOS P D. Negative Poisson's ratios in composites with star-shaped inclusions: A numerical homogenization approach[J]. Archive of Applied Mechanics (Ingenieur Archiv), 1997, 67(4): 274-286. [6] ALDERSON K L, COENEN V L. The low velocity impact response of auxetic carbon fibrelaminates[J]. Physica Status Solidi, 2010, 245(3): 489-496. [7] 侯秀慧, 尹冠生. 负泊松比蜂窝抗冲击性能分析[J]. 机械强度, 2016, 38(5): 905-910. [8] 张一帆. 两种负泊松比蜂窝结构的数值分析及实验研究[D]. 广州: 暨南大学, 2015. [9] GIBSONL, ASHBYM. (1997) Cellular solids: Structures and properties. 2nd edition[M]. Cambridge: Cambridge University Press, 93-106. [10] SCARPA F, SMITH C W, RUZZENE M, et al. Mechanical properties of auxetic tubular truss-like structures[J]. Physica Status Solidi (B), 2008, 245(3): 584-590. [11] 赵显伟. 可变形蜂窝结构的力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2013. [12] LIRA C, INNOCENTI P, SCARPA F. Transverse elastic shear of auxetic multire-entrant honeycombs[J]. Composite Structures, 2009, 90(3): 314-322. [13] 崔世堂, 王波, 张科. 负泊松比蜂窝面内动态压缩行为与吸能特性研究[J]. 应用力学学报, 2017, 34(5): 919-924. [14] WANG Y, WANG L, MA Z D, et al. A negative Poisson's ratio suspension jounce bumper[J]. Materials & Design, 2016, 103: 90-99. [15] AI L, GAO X L. Metamaterials with negative Poisson's ratio and non-positive thermal expansion[J]. Composite Structures, 2017, 162: 70-84. [16] GREDIAC M. A finite element study of the transverse shear in honeycomb cores[J]. International Journal of Solids & Structures, 1993, 30(13): 1777-1788. [17] XIAO D, DONG Z, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis[J]. Materials Science and Engineering A, 2019, 758: 163-171. [18] XIAO D, XIA K, LI Y, et al. Insight into the negative Poisson's ratio effect of metallic auxetic reentrant honeycomb under dynamic compression[J]. Materials Science and Engineering: A, 2019, 763:138151. [19] 任毅如, 蒋宏勇, 金其多, 等. 仿生负泊松比拉胀内凹蜂窝结构耐撞性[J]. 航空学报, 2021, 42(3): 314-324. [20] HOU X H, DENG Z C, ZHANG K, et al. Dynamic crushing strength analysis of auxetic honeycombs[J]. Acta Mechanica Solida Sinica, 2016, 29(5): 490-501. [21] TAN H L, HE Z C, LI K X, et al. In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio[J]. Composite Structures, 2019, 229: 111415. [22] 马芳武, 梁鸿宇, 王强, 等. 双材料负泊松比结构的面内冲击动力学性能[J]. 吉林大学学报(工学版), 2021, 51(1): 114-121. |