[1] BABATUNDE S A. Review of strengthening techniques for masonry using fiber reinforced polymers[J]. Composite Structures, 2017, 161: 246-255. [2] 陶毅, 古金本, 信任, 等. CFRP网格修复后多层砌体结构墙体的抗震性能[J].西南交通大学学报, 2019, 54(6): 1258-1267. [3] 荆磊, 尹世平, 徐世烺. 纤维编织网增强水泥基材料加固砌体结构研究进展[J]. 土木工程学报, 2020, 53(6): 79-89. [4] KOUTAS L N, TETTA Z, BOURNAS D A, et al. Strengthening of concrete structures with textile reinforced mortars: State-of-the-art review[J]. Journal of Composites for Construction, 2019, 23(1): 03118001. [5] 高淑玲, 靳嘉鹏, 郭亚栋. 纤维增强水泥基复合材料加固砌体墙抗剪性能试验研究及破坏机理分析[J]. 工业建筑, 2018, 48(12): 174-180. [6] ASCIONE L, GIANMARCO D F, STEFANO D S. A qualification method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems[J]. Composites Part B, 2015, 78: 497-506. [7] ASCIONE L, GEMINIANO M, D'APONTE A. Fabric-Reinforced Cementitious Matrix (FRCM): A new Italian guideline under development[J]. Key Engineering Materials, 2014, 3378(624-624): 3-10. [8] ALECCI V, STEFANO M D, LUCIANO R, et al. Experimental investigation on bond behavior of cement-matrix-based composites for strengthening of masonry structures[J]. Journal of Composites for Construction, 2015, 20(1): 04015041. [9] LEONE M, AIELLO M A, BALSAMO A, et al. Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate[J]. Composites Part B, 2017, 127: 196-214. [10] ASKOUNI P D, PAPANICOLAOU C G. Experimental investigation of bond between glass textile reinforced mortar overlays and masonry: The effect of bond length[J]. Materials and Structures, 2017, 50(2):164. [11] 林俊武. 双重功能加固材料的力学及界面黏结性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [12] CAROZZI F G, POGGI C. Mechanical properties and debonding strength of Fabric Reinforced Cementitious Matrix (FRCM) systems for masonry strengthening[J]. Composites Part B, 2015, 70: 215-230. [13] CAROZZI F G, BELLINI A, D'ANTINO T, et al. Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements[J]. Composites Part B, 2017, 128: 100-119. [14] D'AMBRISI A, FEO L, FOCACCI F. Experimental and analytical investigation on bond between Carbon-FRCM materials and masonry[J]. Composites Part B, 2013, 46: 15-20. [15] CAGGEGI C, CAROZZI F G, SANTIS S D, et al. Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures[J]. Composites Part B, 2017, 127: 175-195. [16] FELICE G D, SANTIS S D, GARMENDIA L, et al. Mortar-based systems for externally bonded strengthening of masonry[J]. Materials and structures, 2014, 47(12): 2021-2037. [17] 徐世烺, 李赫. 碳纤维编织网和高性能细粒混凝土的黏结性能[J]. 建筑材料学报, 2006(2): 211-215. [18] XU S L, KRUGER M, REINHARDT H W, et al. Bond characteristics of carbon, alkali resistant glass, and aramid textiles in mortar[J]. Journal of Materials in Civil Engineering, 2004, 16(4): 356-364. [19] 闫德俊. CFRP网格-聚合物水泥砂浆(PCM)加固混凝土结构界面受力性能数值模拟分析[D]. 西安: 长安大学, 2020. [20] DALALBASHI A, GHIASSI B, OLIVEIRA D V. Analytical modeling of the bond behavior between textile and mortar based on pull-out tests[J]. Key Engineering Materials, 2019, 5929: 112-117. [21] 刘赛, 朱德举, 李安令. 织物增强混凝土的研究与应用进展[J]. 建筑科学与工程学报, 2017, 34(5): 134-146. [22] 王珂, 李荣, 李庆伟. 复合材料网格加固砌体墙抗剪试验研究与分析[J]. 工业建筑, 2019, 49(6): 26-31. [23] 艾珊霞, 尹世平, 徐世烺. 纤维编织网增强混凝土的研究进展及应用[J]. 土木工程学报, 2015, 48(1): 27-40. [24] 侯振国, 何海英, 徐平, 等. 玄武岩纤维编织网增强混凝土高温后力学性能及损伤机理[J]. 硅酸盐通报, 2021, 40(12): 3976-3984. [25] 关国英, 赵文杰. 纤维增强水泥基复合材料的研究进展[J]. 硅酸盐通报, 2017, 36(10): 3342-3346, 3360. [26] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825. [27] 韦宗延. 纤维增强水泥基材料的研究现状及发展趋势[J]. 山西建筑, 2018, 44(29): 130-131. [28] 龚宏伟, 江世永, 陈进, 等. 纤维增强水泥基复合材料弯曲性能与纤维作用机理研究[J]. 玻璃钢/复合材料, 2019(10): 19-25. [29] 阎宇杰. PVA纤维增强水泥基复合材料力学性能试验研究[D]. 保定: 河北大学, 2016. [30] 周小勇, 胡奇伟, 李娜. 多种纤维增强水泥基复合材料单轴抗拉性能对比研究[J]. 公路工程, 2016, 41(3): 89-94. [31] 王俊杰. 织物增强纤维复合水泥基材料力学性能研究[D]. 北京: 北京建筑大学, 2021. [32] 廖维张, 王俊杰, 王秋婉. 玄武岩织物网格-纤维水泥基复合层拉伸性能试验研究[J]. 复合材料科学与工程, 2021(10): 42-50. |