[1] ZUO L S, LI K, REN D G, et al. Surface modification of aramid fiber by crystalline polyarylene ether nitrilesizing for improving interfacial adhesion with polyarylene ether nitrile[J]. Composites Part B, 2021, 217: 108917. [2] 李亚锋, 李崇明, 黑艳伟, 等. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2009, 47(4): 39-46. [3] 管小红, 朱苏康. 芳砜纶织物的纳米抗紫外整理[J]. 东华大学学报(自然科学版), 2009, 35(3): 328-331. [4] 邢哲, 夏延致,王川. 耐紫外线芳纶1313的制备及力学性能研究[J]. 陕西科技大学学报, 2007, 25(5): 67-70. [5] HARGREAVES G, BOWEN J H. Combined effects of gamma and ultraviolet radiation plus heat on fibrous polyamides[J]. Textile Research Journal, 1973, 43(10): 568-576. [6] PENN L, LARSEN F. Physicochemical properties of Kevlar 49 fibre[J]. Journal of Applied Polymer Science, 1979, 23(1): 59-73. [7] SONG B, FU Q, LIU X Y, et al. Effect of environmental factors on the aging behave of PBO fibers and the storage life prediction[J]. Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2010, 24(5): 487-492. [8] GHOSH L, FADHILAH M H, KINOSHITA H, et al. Synergistic effect of hyperthermal atomic oxygen beam and vacuum ultraviolet radiation exposures on the mechanical degradation of high-modulus aramid fibers[J]. Polymer, 2006, 47(19): 6836-6842. [9] WALSH P, HU X, CUNNIFF P, et al. Environmental effects on poly-p-phenylenebenzobisoxazole fibers. Ⅰ. Mechanisms of degradation[J]. Journal of Applied Polymer Science, 2010, 102(4): 3517-3525. [10] BROWN J R, BROWNE N M, BURCHILL P J, et al. Photochemical ageing of Kevlar 49[J]. Textile Research Journal, 1983, 53(4): 214-219. [11] SAID M A, DINGWALL B, GUPTA A, et al. Investigation of ultra violet (UV) resistance for high strength fibers[J]. Advances in Space Research, 2006, 37(11): 2052-2058. [12] 陈超峰, 兰江, 徐长刚, 等. 芳纶的老化性能[J]. 合成纤维, 2013, 42(12): 1-6. [13] CARLSSON D J, GAN L H, PARNELL R D, et al. The photodegradation of poly(1,3-phenylene isophthalamide) films in air[J]. Journal of Polymer Science: Polymer Letters Edition, 1979, 11(11): 683-688. [14] LI S N, GU A J, LIANG G Z, et al. The influence of the short-term ultraviolet radiation on the structure and properties of poly(p-phenyleneterephthalaramide) fibers[J]. Applied Surface Science, 2013, 265 (15): 519-526. [15] 梁晶晶, 张慧茹, 孙晋良, 等. 芳香族聚酰胺织物抗紫外老化的研究[J]. 合成纤维, 2011, 40(3): 1-4. [16] DOBB M G, ROBSON R M, ROBERTS A H. The ultraviolet sensitivity of Kevlar 149 and Technorafibres[J]. Journal of Materials Science, 1993, 28(3): 785-788. [17] 张涛, 金俊弘, 杨胜林, 等. 抗紫外老化聚对苯撑苯并二噁唑(PBO)纤维的制备与表征[J]. 化学学报, 2010, 68(2): 199-204. [18] 邱峻. 纳米TiO2溶胶制备及其对PBO纤维抗紫外光老化的影响[J]. 盐城工学院学报(自然科学版), 2009, 22(1): 35-39. [19] SUN H, KONG H J, DING H Q, et al. Improving UV resistance of aramid fibers by simultaneously synthesizing TiO2 on their surfaces and in the interfaces between fibrils/microfibrils using supercritical carbon dioxide[J]. Polymers, 2020, 12: 147. [20] LI L, DING X, XING Y J. Application of Al doped TiO2 coating on photo-stabilization of aramid fibres[C]//东华大学. 2007年先进纤维与聚合物国际会议论文集. 北京: 化学工业出版社, 2007: 320-322. [21] DONG L, SHI M, XU S J, et al. Surface construction of fluorinated TiO2 nanotube networks to develop uvioresistant superhydrophobic aramid fabric[J]. RSC Advances, 2020, 10(38): 22578-22585. [22] PATTERSON B A, SODANO H A. Enhanced interfacial strength and UV-shielding of aramid fiber composites through ZnO nanoparticle sizing[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 33963-33971. [23] ZHANG L W, KONG H J, QIAO M M, et al. Supercritical CO2-induced nondestructive coordination between ZnO nanoparticles and aramid fiber with highly improved interfacial-adhesion properties and UV resistance[J]. Applied Surface Science, 2020, 521: 146430. [24] ZHANG L W, KONG H J, QIAO MM, et al. Growing nano-SiO2 on the surface of aramid fibers assisted by supercritical CO2 to enhance the thermal stability, interfacial shear strength, and UV resistance[J]. Polymers, 2019, 11(9): 1397. [25] ZHOU L F, YUAN L, GUAN Q B, et al. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance[J].Applied Surface Science, 2017, 411(31): 34-45. [26] SHAO Q, LU F, YU L, et al. Facile immobilization of graphene nanosheets onto PBO fibers via MOF-mediated coagulation strategy: multifunctional interface with self-healing and ultraviolet-resistance performance[J]. Journal of Colloid and Interface Science, 2020, 587: 661-671. [27] MA L X, ZHANG J W, TENG C Q. Covalent functionalization of aramid fibers with zinc oxide nano-interphase for improved UV resistance and interfacial strength in composites [J]. Composite Science and Technology, 2020, 188: 107996. [28] 王虎, 刘吉平. 聚对苯撑苯并嗯唑纤维的抗紫外光老化研究进展[J]. 中国塑料, 2013, 27(4): 7-12. [29] 陈凤贵, 张明忠, 陈林飞, 等. 聚多巴氨修饰聚对苯撑苯并双噁唑纤维增强其老化性与功能性[J]. 高分子材料科学与工程, 2020, 36(5): 153-160. [30] CHENG K, LI M Z, ZHANG S H, et al. Study on the structure and properties of functionalized fibers with dopamine[J]. Colloids and Surfaces A, 2019, 582: 123846. [31] ZHANG H R, LIANG G Z, GU A J, et al. Facile preparation of hyperbranched polysiloxane-grafted aramid fibers with simultaneously improved UV resistance, surface activity, and thermal and mechanical properties[J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2684-2696. [32] 张娜, 杨胜林, 金俊弘, 等. 可溶性聚酰亚胺涂覆PBO纤维的抗紫外老化性能[J]. 东华大学学报(自然科学版), 2012, 38(6): 11-15. [33] LU K Y, GE X, WEI Z H, et al. Synergistically enhanced ultraviolet aging resistance and interfacial adhesion of poly(p-phenylenebenzobisoxazole) fiber with soluble naphthalimide sizing[J]. Polymer Composites, 2021, 42: 2122-2134. [34] JIANG J, WANG S X, ZHANG S H, et al. Nano titanium dioxide/PAoQ-coated polybenzoxazol fibers for enhancing anti-ultraviolet performance[J]. Textile Research Journal, 2017, 88(19): 2267-2275. [35] ZHANG J W, TENG C Q. Nondestructive growing nano-ZnO on aramid fibers to improve UV resistance and enhance interfacial strength in composites[J]. Materials and Design, 2020, 192: 108774. [36] ZHU J J, YUAN L, GUAN Q B, et al. A novel strategy of fabricating high performance UV-resistant aramid fibers with simultaneously improved surface activity, thermal and mechanical properties through building polydopamine and graphene oxide bi-layer coatings[J]. Chemical Engineering Journal, 2017, 310: 134-147. [37] YUAN J Y, ZHANG Z Z, YANG M M, et al. POSS grafted hybrid-fabric composites with a biomimic middle layer for simultaneously improved UV resistance and tribological properties[J]. Composites Science and Technology, 2018, 160: 69-78. [38] 管宇, 冒亚红. 八聚乙烯基倍半硅氧烷改性分散染料对芳纶纤维抗紫外染色[J]. 成都纺织高等专科学校学报, 2017, 34(1): 13-20. [39] ZHU X L, LIANG G Z, GU A J, et al. Unique UV-resistant and surface active aramid fibers with simultaneously enhanced mechanical and thermal properties by chemically coating Ce0.8Ca0.2O1.8 having low photocatalytic activity[J]. Journal of Materials Chemistry A, 2014, 2(29): 11286-11298. [40] ZHU X L, LIANG G Z, GU A J, et al. Unique surface modified aramid fibers with improved flame retardancy, tensile properties, surface activity and UV-resistance through in situ formation of hyperbranched polysiloxane-Ce0.8Ca0.2O1.8 hybrids[J]. Journal of Materials Chemistry A, 2015, 3(23): 12515-12529. [41] 赵浩, 金俊弘, 杨胜林, 等. 复合抗紫外剂对PBO纤维光稳定性的影响[J]. 材料导报, 2011, 25: 107-109. [42] LIU J P, LIU X B, WANG D, et al. An important factor affecting the UV aging resistance of PBO fiber foped with nano-TiO2: the number of amorphous regions[J]. Polymer, 2019, 11(5): 869. |