[1] 吴尘瑾, 祖磊, 李书欣, 等. 变刚度复合材料层合板的纤维铺放路径设计及屈曲分析[J]. 玻璃钢/复合材料, 2018(4): 5-10. [2] 黄威, 王显峰, 姚锋. 复合材料平板变刚度轨迹规划及铺放工艺性[J]. 玻璃钢/复合材料, 2017(12): 29-33. [3] SHI J, TONG M B, ZHOU C W, et al. Progressive failure analysis in open-hole tensile composite laminates of airplane stringers based on tests and simulations[J]. Applied Sciences, 2021, 11(1): 185. [4] 杜善义. 复合材料与战略性新兴产业[J]. 科技导报, 2013, 31(7): 3. [5] WANG Z G, YANG Y. Design of a variable-stiffness compliant skin for a morphing leading edge[J]. Applied Sciences, 2021, 11(7): 3165-3165. [6] 王显峰, 严飙, 肖军. 机器人高效自动铺丝技术研究进展[J]. 航空制造技术, 2019, 62(16): 14-20. [7] 曹忠亮, 郭登科, 林国军, 等. 碳纤维复合材料自动铺放关键技术的现状与发展趋势[J]. 材料导报, 2021, 35(21): 21185-21194. [8] WU Z M, WEAVER P M, RAJU G, et al. Buckling analysis and optimisation of variable angle tow composite plates[J]. Thin-Walled Structures, 2012, 60: 163-172. [9] GÜRDAL Z, TATTING B F, WU C K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A, 2008, 39(5): 911-922. [10] MISHRA V, PEETERS D M J, ABDALLA M M. Stiffness and buckling analysis of variable stiffness laminates including the effect of automated fibre placement defects[J]. Composite Structures, 2019, 226: 111233. [11] HYER M W, LEE H H. The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes[J]. Composite Structures, 1991, 18(3): 239-261. [12] 马永前, 张淑杰, 许震宇. 纤维曲线铺放的变刚度复合材料层合板的屈曲[J]. 玻璃钢/复合材料, 2009(5): 31-35. [13] 杜宇, 杨涛, 李志猛, 等. 纤维曲线铺放的变刚度复合材料层合板的失效分析[J]. 宇航材料工艺, 2013, 43(5): 22-25. [14] 杜宇, 杨涛, 戴维蓉, 等. 纤维曲线铺放的变刚度复合材料损伤失效试验研究[J]. 固体火箭技术, 2013, 36(6): 826-830. [15] 卫宇璇, 张明, 刘佳, 等. 基于自动铺放技术的高精度变刚度复合材料层合板屈曲性能[J]. 复合材料学报, 2020, 37(11): 2807-2815. [16] 白瑞祥, 佟凯旋, 刘琛. 自动铺丝变刚度加筋板结构承载能力分析[J]. 哈尔滨工程大学学报, 2019, 40(8): 1480-1487. [17] 叶辉, 李清原, 闫康康. 变刚度复合材料层合板的力学性能[J]. 吉林大学学报(工学版), 2020, 50(3): 920-928. [18] 李阳, 牛雪娟, 潘文峰. 含中心孔复合材料变刚度板孔边应力解析法分析[J]. 固体火箭技术, 2018, 41(1): 84-88, 129. [19] PARNAS L, SÜHA O, ÜMIT C. Optimum design of composite structures with curved fiber courses[J]. Composites Science and Technology, 2003, 63(7): 1071-1082. [20] HEIDARI-RARANI M, BASHANDEH-KHODAEI-NAEINI K, MI-RKHALAF S M. Micromechanical modeling of the mechanical behavior of unidirectional composites-A comparative study[J]. Journal of Reinforced Plastics and Composites, 2018, 37(16): 1051-1071. [21] TSAI S W. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80. |