[1] 沈军, 谢怀勤. 先进复合材料在航空航天领域的研发与应用[J]. 材料科学与工艺, 2008, 16(5): 737-740.
[2] 诸强, 杨智春, 张开达. 一种计及分层效应的复合材料层合板疲劳寿命计算方法[J]. 西北工业大学学报, 2005, 23(6): 708-712.
[3] WILLIAMS J G. Fracture mechanics testing methods for polymers, adhesives and composites[J]. Polymer Testing, 2002, 21(3): 363-363.
[4] CHOI N S, KINLOCH A J, WILLIAMS J G. Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode Ⅰ, mode Ⅱ and mixed-mode Ⅰ/Ⅱ loading[J]. Journal of Composite Materials, 1999, 33(1): 73-100.
[5] SIEGFRIED M J C, TOLA C, CLAES M, et al. Impact and residual after impact properties of carbon fiber/epoxy composites modified with carbon nanotubes[J]. Composite Structures, 2014, 111(11): 488-496.
[6] 刘伟先, 周光明, 王新峰. 复合材料ENF试件裂纹扩展理论分析[J]. 航空学报, 2014, 35(1): 187-194.
[7] KAGEYAMA K, KIKUCHI M, YANAGISAWA N. Stabilized end notched flexure test: Characterization of Mode Ⅱ interlaminar crack growth[C]//In:O'Brien TK, editor. STP1110:Composite materials: Fatigue and fracture (third volume). West Conshohocken, PA: ASTM International, 1991: 210-225.
[8] MARTIN R H, DAVIDSON B D. Mode Ⅱ fracture toughness evaluation using four point bend, end notched flexure test[J]. Plastics, Rubber and Composites, 1999, 28(8): 401-406.
[9] WANG W X, NAKATA M, TAKAO Y, et al. Experimental investigation on test methods for mode Ⅱ inter-laminar fracture testing of carbon fiber reinforced composites[J]. Composites Part A Applied Science & Manufacturing, 2009, 40(9): 1447-1455.
[10] British Standards Institution. Fibre-reinforced plastic composites. Determination of the mode Ⅱ fracture resistance for unidirectionally reinforced materials using the calibrated end-loaded split (C-ELS) test and an effective crack length approach: ISO 15114[S]. London: 2014.
[11] ARRESE A, BOYANO A I, DE GRACIA J et al. A novel procedure to determine the cohesive law in DCB tests[J]. Composites Science and Technology, 2017, 152(10): 76-84.
[12] KOLOOR S S R, TAMIN M N. Mode-Ⅱ interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials[J]. Composite Structures, 2018, 204: 594-606.
[13] VINCIQUERRA A J, DAVIDSON B D. Effect of crack length measurement technique and data reduction procedures on the perceived toughness from four-point bend end-notched flexure tests[J]. Journal of Reinforced Plastics and Composites, 2004, 23(10): 1051-1062.
[14] MIYAGAWA H, SATO C, IKEGAMI K. Mode Ⅱ inter-laminar fracture toughness of multidirectional carbon fiber reinforced plastics cracking on 0//0 interface by Raman spectroscopy[J]. Materials Science & Engineering A, 2001, 308(1-2): 200-208.
[15] PEREIRA A B, DE MORAIS A B, MARQUES A T et al. Mode Ⅱ interlaminar fracture of carbon/epoxy multidirectional laminates[J]. Composites Science and Technology, 2004, 64: 1653-1659.
[16] 碳纤维复合材料层合板 Ⅱ 型层间断裂韧性GⅠC试验方法: HB 7402[S]. 中国: 中国人民共和国航空工业标准, 1996.
[17] Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905/D7905M—14[S]. American: American Society for Testing and Materials, 2014.
[18] Testing methods for interlaminar fracture toughness of carbon fiber reinforced plastics: JIS K 7086[S]. Japanese Standards Association,
1993.
[19] DAVIDSON B D, SUN X. Geometry and data reduction recommendations for a standardized end notched flexure test for unidirectional composites[J]. Journal of ASTM International, 2006, 3(9): 19.
[20] 李玉龙, 刘会芳. 加载速率对层间断裂韧性的影响[J]. 航空学报, 2015, 36(8): 2620-2650.
[21] JR J W G, CARLSSON L A, PIPES R B. Finite element analysis of the end notched flexure specimen for measuring mode Ⅱ fracture toughness[J]. Composites Science & Technology, 1986, 27(3): 177-197.
[22] 尹凯, 于志成, 矫桂琼. 一种减小复合材料层板Ⅱ型层间断裂韧性测试值离散度的改进方法[C]//第十一届全国复合材料学术会议. 合肥: 中国复合材料学会, 2000: 568-572.
[23] LYASHENKO T, LERMAN N, WOLF A et al. Improved mode Ⅱ delamination fracture toughness of composite materials by selective placement of protein-surface treated CNT[J]. Composites Science and Technology, 2013, 85: 29-35.
[24] DAVIES P, KAUSCH H H, WILLIAMS J G, et al, Round-robin interlaminar fracture testing of carbon-fibre-reinforced epoxy and PEEK composites[J]. Composites Science and Technology, 1992, 43: 129-136.
[25] CARLSSON L A, GILLESPIE J W, PIPES R B. On the analysis and design of the end notched flexure (ENF) specimen for mode Ⅱ testing[J]. Journal of Composite Materials, 1986, 20(6): 594-604.
[26] Timoshenko S P. Strength of Materials, Part Ⅰ[M]. Kneger Publishing, 1984: 121-151.
[27] DAVIES P, SIMS G D, BLACKMAN B R K, et al. Comparison of test configurations for determination of mode Ⅱ interlaminar fracture toughness results from international collaborative test programme[J]. Plastics, Rubber and Composites, 1999, 28(9): 432-437.
[28] HASHEMI S, KINLOCH A J, WILLIAMS J G. Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre composites[J]. Journal of Materials Science Letters, 1989, 8(2): 125-129.
[29] WILLIAMS J G. End corrections for orthotropic DCB specimens[J]. Composites Science & Technology, 1989, 35(4): 367-376.
[30] WANG Y, WILLIAMS J G. Corrections for mode-Ⅱ fracture-toughness specimens of composites materials[J]. Composites Science & Technology, 1992, 43(3): 251-256.
[31] PENG L, XU J, ZHANG J Y, et al. Mixed mode delamination growth of multidirectional composite laminates under fatigue loading[J]. Engineering Fracture Mechanics, 2012, 96: 676-686.
[32] HASHEMI S, KINLOCH A J, WILLIAMS J G. The analysis of interlaminar fracture in uniaxial fibre-polymer composites[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1990, 427(1872): 173-199.
[33] BHASHYAM S, DAVIDSON B. Evaluation of data reduction methods for the mixed-mode bending test[J]. AIAA Journal, 1997, 35(3): 546-552.
[34] MORAIS A B D, PEREIRA A B. Application of the effective crack method to mode Ⅰ and mode Ⅱ interlaminar fracture of carbon/epoxy unidirectional laminates[J]. Composites Part A, 2007, 38(3): 785-794.
[35] MOURA M F S F D, SILVA M A L, MORAIS A B D, et al. Equivalent crack based mode Ⅱ fracture characterization of wood[J]. Engineering Fracture Mechanics, 2006, 73(8): 978-993.
[36] WILLIAMS J G, BLACKMAN B R K, BRUNNER A J . Mode Ⅱ fracture testing of composites: A new look at an old problem[J]. Engineering Fracture Mechanics, 2006, 73(16): 2443-2455.
[37] 于志成. 复合材料Ⅱ型层间断裂韧性试验方法研究[J]. 航空材料学报, 1997, 17(4): 54-61.
[38] CARLSSON L A, GILLESPIE J W, TRETHEWEY B R. Mode Ⅱ interlaminar fracture of graphite/epoxy and graphite/PEEK[J]. Journal of Reinforced Plastics and Composites, 1986, 5(3): 170-187.
[39] JR J W G, CARLSSON L A, PIPES R B. Finite element analysis of the end notched flexure specimen for measuring mode Ⅱ fracture toughness[J]. Composites Science & Technology, 1986, 27(3): 177-197.
[40] PEREIRA A B, DE MORAIS A B. Mode Ⅱ inter-laminar fracture of glass/epoxy multidirectional laminates[J]. Composites Part A: Applied Science and Manu-facturing, 2004, 35(2): 265-272.
[41] DAVIDSON B D, ALTONEN C S, POLAHA J J. Effect of stacking sequence on delamination toughness and delamination growth behavior in composite end-notched flexure specimens[C]//In: R. Deo and C. Saff, editor. ASTM STP 1274: Composite Materials: Testing and Design(twelfth Volume). West Conshohocken: ASTM International, 1996: 393-413.
[42] SCHUECKER C, DAVIDSON B D. Evaluation of the accuracy of the four-point bend end-notched flexure test for mode Ⅱ delamination toughness determination[J]. Composites Science & Technology, 2000, 60(11): 2137-2146.
[43] RICE J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968, 35(2): 379-386.
[44] SARRADO C, TURON A, RENART J, et al. An experimental data reduction method for the mixed mode bending test based on the J-integral approach[J]. Composites Science & Technology, 2015, 117: 85-91.
[45] ZHAO Y, SEAH L K, CHAI G B. Measurement of interlaminar fracture properties of composites using the J-integral method[J]. Journal of Reinforced Plasticsand Composites, 2016, 1-12.
[46] WHITNEY J M, BROWNING C E, HOOGSTEDEN W. A double cantilever beam test for characterizing Mode Ⅰ delamination of composite materials[J]. Journal of Reinforced Plastics and Composites, 1982, 1(4): 297-313.
[47] GRADY J E. Fracture toughness testing of polymer matrix composites: NASA technical paper 3199[R]. 1992.
[48] WHITNEY J M. Analysis of interlaminar mode Ⅱ bending specimens using a higher order beam theory[J]. Journal of Reinforced Plastics & Composites, 1990, 9(6): 522-536.
[49] REISSNER E. On a variational theorem in elasticity[J]. Studies in Applied Mathematics, 1950, 29(1-4): 90-95.
[50] SHI Y B, HULL D, PRICE J N. Mode Ⅱ fracture of +θ/-θ angled laminate interfaces[J]. Composites Science & Technology, 1993, 47(2): 173-184.
[51] VAN D M F P, SLUYS L J. A numerical investigation into the size effect in the transverse crack tension test for mode Ⅱ delamination[J]. Composites Part A: Applied Science and Manufacturing, 2013, 54: 145-152.
[52] CARLSSON L A, JR J W G. Chapter 4-mode-Ⅱ interlaminar fracture of composites[J]. Composite Materials, 1989, 6(2): 113-157.
[53] 矫桂琼, 李健为, 贾普荣. 热塑性复合材料的Ⅰ型层间断裂韧性[J]. 航空学报, 1993, 14(6): 242-247.
[54] BHASHYAM S, DAVIDSON B. An evaluation of data reduction methods for the mixed mode bending test[J]. AIAA Journal, 2006, 35(3): 546-552.
[55] SCHÖN N J, NYMAN T, BLOM A,et al. Numerical and experimental investigation of a composite ENF-specimen[J]. Engineering Fracture Mechanics, 2000, 65(4): 405-433.
[56] SALPEKAR S A, RAJU I S, O'BRIEN T K. Strain energy release rate analysis of the end-notched flexure specimen using the finite-element method[J]. Journal of Composites Technology & Research, 1988, 10(4): 133-139.
[57] MALL S, KOCHHAR N K. Finite element analysis of end notch flexure specimen[J]. Journal of Composites Technology & Research, 1986, 8(2): 54-57.
[58] DAVIDSON B D, KRUGER R, KÖNIG M. Three dimensional analysis and resulting design recommendations for unidirectional and multidirectional end-notched flexure tests[J]. Journal of Composite Materials, 1995, 29(16): 2108-2133.
[59] DAVIDSON B D. Standardization of the end-notched flexure test for mode Ⅱ interlaminar fracture toughness determination of unidirectional laminated composites[J]. Journal of Testing & Evaluation, 2015, 43(6): 1540-1553.
[60] DAVIDSON B D, GHARIBIAN S J, YU L J. Evaluation of energy release rate-based approaches for predicting delamination growth in laminated composites[J]. International Journal of Fracture, 2000, 105(4): 343-365.
[61] DAVIDSON B D, BIALASZEWSKI R D, SAINATH S S. A non-classical, energy release rate based approach for predicting delamination growth in graphite reinforced laminated polymericcomposites[J]. Composites Science & Technology, 2006, 66(10): 1479-1496. |