[1] YAMASHITA A, KONDO M, GOTO S, et al. Development of high-pressure hydrogen storage system for the toyota "Mirai"[C]//SAE 2015 World Congress & Exhibition. 2015. [2] THOMAS A, YERSAK, DANIEL R, et al. Predictive model for depressurization-induced blistering of type Ⅳ tank liners for hydrogen storage[J]. International Journal of Hydrogen Energy, 2017, 42(48): 28910-28917. [3] ZU L, KOUSSIOS S, BEUKERS A. A novel design solution for improving the performance of composite toroidal hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14343-14350. [4] 何琦, 黄良, 金明哲, 等. 长管拖车钢质内胆玻璃纤维缠绕气瓶纤维层冲击损伤探究[J]. 河南科技, 2019(35): 140-143. [5] WANG L, WANG B, WEI S, et al. Prediction of long-term fatigue life of CFRP composite hydrogen storage vessel based on micromechanics of failure[J]. Composites Part B, 2016, 97: 274-281. [6] MNA D, ASA B, CB A, et al. Analysis on the mechanical response of composite pressure vessels during internal pressure loading: FE modeling and experimental correlation[J]. Composites Part B: Engineering, 2020, 212: 108550. [7] LIU P F, CHU J K, HOU S J, et al. Micromechanical damage modeling and multiscale progressive failure analysis of composite pressure vessel[J]. Computational Materials Science, 2012, 60 : 137-148. [8] JUAN, PEDRO, BERRO, et al. 700 bar type Ⅳ high pressure hydrogen storage vessel burst-Simulation and experimental validation[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13183-13192. [9] ZU L, XU H, WANG H, et al. Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding[J]. Composite Structures, 2019,207: 41-52. [10] ZHANG Q, XU H, JIA X, et al. Design of a 70 MPa type Ⅳ hydrogen storage vessel using accurate modeling techniques for dome thickness prediction[J]. Composite Structures, 2020, 236: 111915. [11] RAFIEE R, TORABI M A. Stochastic prediction of burst pressure in composite pressure vessels[J]. Composite Structures, 2018, 185: 573-583. [12] LIAO B B, WANG D L, JIA L Y, et al. Continuum damage modeling and progressive failure analysis of a Type Ⅲ composite vessel by considering the effect of autofrettage[J]. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 2019, 20(1): 36-49. [13] WU Q G, CHEN X D, FAN Z C, et al. Stress and damage analyses of composite overwrapped pressure vessel[J]. Procedia Engineering, 2015, 130(6): 32-40. [14] LIN S, JIA X, SUN H, et al. Thermo-mechanical properties of filament wound CFRP vessel under hydraulic and atmospheric fatigue cycling[J]. Composites Part B Engineering, 2013, 46: 227-233. [15] KIM Y S, KIM L H, PARK J S. The effect of composite damage on fatigue life of the high pressure vessel for natural gas vehicles[J]. Composite Structures, 2011, 93(11): 2963-2968. [16] WU E Q, ZHAO Y, ZHAO B, et al. Fatigue life prediction and verification of high-pressure hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2021, 46(59): 30412-30422. [17] 车用压缩氢气铝内胆碳纤维全缠绕气瓶: GB/T 35544—2017[S]. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. [18] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1981, 48(4): 846-852. [19] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials, 2016, 33(24): 2248-2280. [20] BRECHET Y, MAGNIN T, SORNETTE D. The Coffin-Manson law as a consequence of the statistical nature of the LCF surface damage[J]. Acta Metallurgica Et Materialia, 1992, 40(9): 2281-2287. [21] BOLLER C, SEEGER T. Materials data for cyclic loading[M]. Elsevier, 1987. [22] DOWLING N E. Mean stress effects in strain-life fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(12): 1004-1019. [23] 倪侃. 随机疲劳累积损伤理论研究进展[J]. 力学进展, 1999, 29(1): 43-65. [24] 嵇应凤, 姚卫星, 夏天翔. 线性疲劳累积损伤准则适用性评估[J]. 力学与实践, 2015, 37(6): 674-682. |