[1] 王后. 气凝胶热导率计算[D]. 南京: 南京大学, 2013. [2] NOTARIO B, PINTO J, SOLORZANO E, et al. Experimental validation of the Knudsen effect in nanocellular polymeric foams[J]. Polymer, 2015, 56: 57-67. [3] 何雅玲, 谢涛. 气凝胶纳米多孔材料传热计算模型研究进展[J]. 科学通报, 2015, 60(2): 137-163. [4] ZHANG B, TONG Z, PANG Y, et al. Design and electrospun closed cell structured SiO2 nanocomposite fiber by hollow SiO2/TiO2 spheres for thermal insulation[J]. Composites Science and Technology, 2022, 218: 109152. [5] 杨椰榕. 中空SiO2纳米绝热材料的制备与性能研究[D]. 广州: 华南理工大学, 2020. [6] REZAEI S, ZOLALI A M, JALALI A, et al. Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor[J]. Journal of Colloid and Interface Science, 2020, 561: 890-901. [7] MA H S, ROBERTS A P, PRÉVOST J, et al. Mechanical structure-property relationship of aerogels[J]. Journal of Non-Crystalline Solids, 2000, 277(2-3): 127-141. [8] SHE J H, OHJI T. Porous mullite ceramics with high strength[J]. Journal of Materials Science Letters, 2002, 21(23): 1833-1834. [9] KOBAYASHI Y, SAITO T, ISOGAI A. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators[J]. Angewandte Chemie International Edition, 2015, 53(39): 10394-10397. [10] PATEL R P, PUROHIT N S, SUTHAR A M. An overview of silica aerogels[J]. International Journal of Chem Tech Research, 2009, 1(4): 1052-1057. [11] TORRES R B, VAREDA J P, LAMY-MENDES A, et al. Effect of different silylation agents on the properties of ambient pressure dried and supercritically dried vinyl-modified silica aerogels[J]. The Journal of Supercritical Fluids, 2019, 147: 81-89. [12] VAREDA J P, MATIAS T, DURÃES L. Facile preparation of ambient pressure dried aerogel-like monoliths with reduced shrinkage based on vinyl-modified silica networks[J]. Ceramics International, 2018, 44(14): 17453-17458. [13] JAXEL J, MARKEVICIUS G, RIGACCI A, et al. Thermal superinsulating silica aerogels reinforced with short man-made cellulose fibers[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 113-121. [14] WU J, ZENG L, HUANG X, et al. Mechanically robust and shape-memory hybrid aerogels for super-insulating applications[J]. Journal of Materials Chemistry A, 2017, 5(29): 15048-15055. [15] HE C, HUANG J, LI S, et al. Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 927-936. [16] REN J F, FENG J Y, WANG L B, et al. High specific surface area hybrid silica aerogel containing POSS[J]. Microporous and Mesoporous Materials, 2021, 310: 110456. [17] 江包家祺. 铝掺杂二氧化硅溶胶、气凝胶及其复合材料的制备 [D]. 杭州: 浙江大学, 2020. [18] WANG L, SONG G, GUO R, et al. Enhancing aerogel mechanical properties with incorporation of POSS[J]. Ceramics International, 2019, 45(12): 14586-14593. [19] COMPTON O C, NGUYEN S T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials[J]. Small, 2010, 6(6): 711-723. [20] DERVIN S, LANG Y, PEROVA T, et al. Graphene oxide reinforced high surface area silica aerogels[J]. Journal of Non-Crystalline Solids, 2017, 465: 31-38. [21] ZHANG Z H, CHEN Z Y, TANG Y H, et al. Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation[J]. Journal of Materials Science & Technology, 2022, 114: 131-142. [22] WANG L, FENG J, JIANG Y, et al. Polyvinylmethyldimethoxysilane reinforced methyltrimethoxysilane based silica aerogels for thermal insulation with super-high specific surface area[J]. Materials Letters, 2019, 256: 126644. [23] WU X, MAN J, LIU S, et al. Isocyanate-crosslinked silica aerogel monolith with low thermal conductivity and much enhanced mechanical properties: Fabrication and analysis of forming mechanisms [J]. Ceramics International, 2021, 47(19): 26668-26677. [24] WANG Q, YU H, ZHANG Z, et al. One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates[J]. Journal of Colloid and Interface Science, 2020, 573: 62-70. [25] NGUYEN B N, MEADOR M A B, TOUSLEY M E, et al. Tailoring elastic properties of silica aerogels cross-linked with polystyrene[J]. ACS Applied Materials & Interfaces, 2009, 1(3): 621-630. [26] LINNEEN N N, PFEFFER R, LIN Y. CO2 adsorption performance for amine grafted particulate silica aerogels[J]. Chemical Engineering Journal, 2014, 254: 190-197. [27] SHAO Z D, CHENG X, ZHENG Y M. Facile co-precursor sol-gel synthesis of a novel amine-modified silica aerogel for high efficiency carbon dioxide capture[J]. Journal of Colloid and Interface Science, 2018, 530: 412-423. [28] SHAO Z, WU G, CHENG X, et al. Rapid synthesis of amine cross-linked epoxy and methyl co-modified silica aerogels by ambient pressure drying[J]. Journal of Non-Crystalline Solids, 2012, 358(18-19): 2612-2615. [29] TIAN J, YANG Y, XUE T, et al. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy[J]. Journal of Materials Science & Technology, 2022, 105: 194-202. [30] ABDIKHEIBARI S, LEI W, DUMÉE L F, et al. Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride/polypiperazine amide with enhanced flux and fouling resistance[J]. Journal of Materials Chemistry A, 2018, 6(25): 12066-12081. [31] XIANG A, LI Y, FU L, et al. Thermal degradation and flame retardant properties of isocyanate-based flexible polyimide foams with different isocyanate indices[J]. Thermochimica Acta, 2017, 652: 160-165. [32] YANG Z, ZHU D, LI H. A chitosan-assisted co-assembly synthetic route to low-shrinkage Al2O3-SiO2 aerogel via ambient pressure drying[J]. Microporous and Mesoporous Materials, 2020, 293: 109781. [33] KADIB A E, MOLVINGER K, BOUSMINA M, et al. Decoration of chitosan microspheres with inorganic oxide clusters: Rational design of hierarchically porous, stable and cooperative acid-base nanoreactors[J]. Journal of Catalysis, 2010, 273(2): 147-155. [34] MOUSSOUT H, AHLAFI H, AAZZA M, et al. Al2O3/chitosan nanocomposite: Preparation, characterization and kinetic study of its thermal degradation[J]. Thermochimica Acta, 2018, 668: 169-177. [35] EBISIKE K, OKORONKWO A E, ALANEME K K. Synthesis and characterization of Chitosan-silica hybrid aerogel using sol-gel method[J]. Journal of King Saud University-Science, 2020, 32(1): 550-554. [36] SAENGKWAMSAWANG P, PIMANPAENG S, AMORNKITBAMRUNG V, et al. Synthesis and characterization of Al2O3 nanopowders by a simple chitosan-polymer complex solution route[J]. Ceramics International, 2014, 40(4): 5137-5143. [37] SHAFI S, NAVIK R, DING X, et al. Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel[J]. Journal of Non-Crystalline Solids, 2019, 503: 78-83. [38] LEI Y, CHEN X, SONG H, et al. Improvement of thermal insulation performance of silica aerogels by Al2O3 powders doping[J]. Ceramics International, 2017, 43(14): 10799-10804. [39] LI X, FENG J, JIANG Y, et al. Preparation and properties of PAN-based carbon fiber-reinforced SiCO aerogel composites[J]. Ceramics International, 2019, 45(14): 17064-17072. [40] RENLUND G M, PROCHAZKA S, DOREMUS R H. Silicon oxycarbide glasses: Part Ⅱ. Structure and properties[J]. Journal of Materials Research, 1991, 6(12): 2723-2734. [41] HARSHE R, BALAN C, RIEDEL R. Amorphous Si (Al) OC ceramic from polysiloxanes: Bulk ceramic processing, crystallization behavior and applications[J]. Journal of the European Ceramic Society, 2004, 24(12): 3471-3482. [42] TIAN H, MA Q S, PAN Y, et al. Structure and mechanical properties of porous silicon oxycarbide ceramics derived from silicone resin with different filler content[J]. Ceramics International, 2013, 39(1): 71-74. [43] TAKAHASHI T, MÜNSTEDT H, MODESTI M, et al. Oxidation resistant ceramic foam from a silicone preceramic polymer/polyurethane blend[J]. Journal of the European Ceramic Society, 2001, 21(16): 2821-2828. [44] HARRIS M, CHAUDHARY T, DRZAL L, et al. Silicon oxycarbide coatings on graphite fibers: Chemistry, processing, and oxidation resistance[J]. Materials Science and Engineering: A, 1995, 195: 223-236. [45] NIAZI Z, ASHJARI M, JANQAMSARI Y. Ultrasound-promoted synthesis of high-porosity silica aerogels using embedded recycled PET fibers[J]. Microporous and Mesoporous Materials, 2022, 111682. [46] PATIL S P, SHENDYE P, MARKERT B. Mechanical properties and behavior of glass fiber-reinforced silica aerogel nanocomposites: Insights from all-atom simulations[J]. Scripta Materialia, 2020, 177: 65-68. [47] SALOMO S, NGUYEN T X, LE D K, et al. Advanced fabrication and properties of hybrid polyethylene tetraphalate fiber-silica aerogels from plastic bottle waste[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556: 37-42. [48] LU Z, YUAN Z, LIU Q, et al. Multi-scale simulation of the tensile properties of fiber-reinforced silica aerogel composites[J]. Materials Science and Engineering: A, 2015, 625: 278-287. [49] ISWAR S, GRIFFA M, KAUFMANN R, et al. Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: An X-ray tomography study[J]. Microporous and Mesoporous Materials, 2019, 278: 289-296. [50] LI Z, CHENG X, HE S, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 316-325. [51] ZOK F W, LEVI C G. Mechanical properties of porous-matrix ceramic composites[J]. Advanced Engineering Materials, 2001, 3(1-2): 15-23. [52] YI Z, YAN L, ZHANG T, et al. Thermal insulated and mechanical enhanced silica aerogel nanocomposite with in-situ growth of mullite whisker on the surface of aluminum silicate fiber[J]. Composites Part A: Applied Science and Manufacturing, 2020, 136: 105968. [53] ZHENG Q, CAI Z, GONG S. Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents[J]. Journal of Materials Chemistry A, 2014, 2(9): 3110-3118. [54] YU Y, WU X, GUO D, et al. Preparation of flexible, hydrophobic, and oleophilic silica aerogels based on a methyltriethoxysilane precursor[J]. Journal of Materials Science, 2014, 49(22): 7715-7722. [55] HE S, CHENG X, LI Z, et al. Facile synthesis of sponge reinforced monolithic silica aerogels with improved mechanical property and excellent absorptivity[J]. Materials Letters, 2015, 154: 107-111. [56] POCO J F, SATCHER JR J H, HRUBESH L W. Synthesis of high porosity, monolithic alumina aerogels[J]. Journal of non-crystalline solids, 2001, 285(1-3): 57-63. [57] PENG F, JIANG Y, FENG J, et al. Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1 500 ℃[J]. Chemical Engineering Journal, 2021, 411: 128402. [58] ZHOU T, CHENG X, PAN Y, et al. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying[J]. Applied Surface Science, 2018, 437: 321-328. [59] WONG J C, KAYMAK H, TINGAUT P, et al. Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites[J]. Microporous and Mesoporous Materials, 2015, 217: 150-158. [60] EICHHORN S J, DUFRESNE A, ARANGUREN M, et al. Current international research into cellulose nanofibres and nanocomposites[J]. Journal of Materials Science, 2010, 45(1): 1-33. [61] HOU X, ZHANG R, FANG D. An ultralight silica-modified ZrO2-SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength[J]. Scripta Materialia, 2018, 143: 113-116. [62] LYONS J S, STARR T L. Strength and toughness of slip-cast fused-silica composites[J]. Journal of the American Ceramic Society, 1994, 77(6): 1673-1675. [63] XU L, JIANG Y, FENG J, et al. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations[J]. Ceramics International, 2015, 41(1): 437-442. [64] WANG S, YUE L, ZHANG X. Influence of the microstructure evolution of ZrO2 fiber on the fracture toughness of ZrB2-SiC nanocomposite ceramics[J]. Materials & Design, 2013, 49: 808-813. |