[1] LU T J, ZHANG Q C, JIN F. Recent progress in the development of lightweight porous materials and structures[J]. Materials China, 2012, 31(1): 14-35. [2] YANG J S, MA L, CHAVES-VARGAS M, et al. Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels[J]. Composites Science and Technology, 2017, 147: 89-99. [3] WEI X, LI D, XIONG J. Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach[J]. Composites Science and Technology, 2019, 184: 107878. [4] ASHBY M F. The properties of foams and lattices[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1838): 15-30. [5] QUEHEILLALT D T, CARBAJAL G, PETERSON G P, et al. A multifunctional heat pipe sandwich panel structure[J]. International Journal of Heat and Mass Transfer, 2008, 51(1-2): 312-326. [6] WICKS N, HUTCHINSON J W. Performance of sandwich plates with truss cores[J]. Mechanics of Materials, 2004, 36(8): 739-751. [7] WADLEY H N G. Multifunctional periodic cellular metals[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1838): 31-68. [8] GEORGE T, DESHPANDE V S, WADLEY H N G. Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores[J]. Composites Part A: Applied Science and Manufacturing, 2013, 47: 31-40. [9] LEE B K, KANG K J. A parametric study on compressive characteristics of wire-woven bulk Kagome truss cores[J]. Composite Structures, 2010, 92(2): 445-453. [10] ULLAH I, BRANDT M, FEIH S. Failure and energy absorption characteristics of advanced 3D truss core structures[J]. Materials & Design, 2016, 92: 937-948. [11] WEI K, YANG Q, LING B, et al. Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting[J]. Extreme Mechanics Letters, 2018, 23: 41-48. [12] EICHENHOFER M, WONG J C H, ERMANNI P. Exploiting cyclic softening in continuous lattice fabrication for the additive manufacturing of high performance fibre-reinforced thermoplastic composite materials[J]. Composites Science and Technology, 2018, 164: 248-259. [13] WANG R, SHANG J, LI X, et al. Novel topological design of 3D Kagome structure for additive manufacturing[J]. Rapid Prototyping Journal, 2018, 24(2): 261-269. [14] WU Q, VAZIRI A, ASL M E, et al. Lattice materials with pyramidal hierarchy: Systematic analysis and three dimensional failure mechanism maps[J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 112-144. [15] YE G, BI H, HU Y. Compression behaviors of 3D printed pyramidal lattice truss composite structures[J]. Composite Structures, 2020, 233: 111706. [16] 唐玉玲, 陈浩, 平学成, 等. 碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构在竖向载荷下的力学性能[J]. 复合材料学报, 2021, 38(3): 797-808. [17] GAUTAM R, IDAPALAPATI S, FEIH S. Printing and characterisation of Kagome lattice structures by fused deposition modelling[J]. Materials & Design, 2018, 137: 266-275. |