复合材料科学与工程 ›› 2022, Vol. 0 ›› Issue (9): 76-82.DOI: 10.19936/j.cnki.2096-8000.20220928.011

• 应用研究 • 上一篇    下一篇

风力机防除冰的复合材料叶片传热分析与试验研究

李伟1, 王顺燕2, 文飞2, 刘小春2, 王昭力2   

  1. 1.贵州理工学院 人工智能与电气工程学院,贵阳 550003;
    2.大唐贵州新能源开发有限公司,贵阳 556000
  • 收稿日期:2021-08-24 出版日期:2022-09-28 发布日期:2022-09-27
  • 作者简介:李伟(1973-),男,博士,副教授,主要从事电气设备故障检测与风力发电技术方面的研究。
  • 基金资助:
    贵州省科技支撑项目(黔科合支撑[2019]2035号)

Research on heat transfer analysis and test of wind turbine composite blade for antiicing and deicing

LI Wei1, WANG Shun-yan2, WEN Fei2, LIU Xiao-chun2, WANG Zhao-li2   

  1. 1. Artificial Intelligence and Electrical Engineering, Guizhou Institute of Technology College, Guiyang 550003, China;
    2. Datang Guizhou New Energy Development Co., Ltd., Guiyang 556000, China
  • Received:2021-08-24 Online:2022-09-28 Published:2022-09-27

摘要: 掌握复合材料叶片壳层的传热特性对于实现风力机叶片气热法防除冰至关重要。通过分析复合材料叶片气热法传热理论,选择叶片主梁梁帽、前缘和后缘三个典型局部位置构建叶片壳层传热模型,施加不同载荷温度进行叶片传热模拟,分析表明在不同载荷温度下,各模型的传热特性具有一致性,前缘模型和后缘模型因夹芯材料及厚度不同,传热缓慢且温度下降幅度最大,而主梁模型传热较快且在2 h后达到平衡状态温度。通过对现场2 MW叶片进行传热试验,前缘通道监测点温度变化与对应传热模型分析结果接近,传热模拟与试验结果表明加热1.5 h后叶片表面Δ10 ℃温升能够满足复合材料叶片防除冰的工程应用需求。

关键词: 复合材料叶片, 传热特性, 防除冰, 传热模拟, 载荷温度

Abstract: Mastering the heat transfer characteristics of composite blade shell is important to realize the aerothermal anti-icing and deicing of the wind turbine blade. The three heat transfer models of the blade shell are constructed by choosing three local positions, including the spar cap,leading edge and trailing edge, based on the analysis of the heat transfer theory of the aerothermal method for composite blades, and then different load temperatures are imposed on these models to verify heat transfer simulation, respectively. The simulation analysis shows that the heat transfer characteristics of each model are consistent under different load temperatures. The heat transfer process of the leading edge model and trailing edge model is slower and the temperature drop gradient is maximum because of the different sandwich materials and thickness, while the spar cap model is faster and reaches the equilibrium state after 2 h. The field heat transfer test of 2 MW blade was carried and the temperature change trend at the monitoring point of the leading edge is close to the analysis of the corresponding heat transfer model, and the heat transfer simulation and test results show that the Δ10 ℃ temperature rise on the blade surface after heating for 1.5 h can satisfy the engineering application requirements of composite blade anti-icing and deicing.

Key words: composite blade, heat transfer characteristics, anti-icing and deicing, heat transfer simulation, load temperature

中图分类号: