[1] 余海湖, 赵愚, 姜德生. 智能材料与结构的研究及应用[J]. 武汉理工大学学报, 2001, 23(11): 37-41. [2] 杜善义, 冷劲松, 王殿富. 智能材料系统和结构[M]. 北京: 科学出版社, 2001: 1-5. [3] 张新民. 智能材料研究进展[J]. 玻璃钢/复合材料, 2013(6): 57-63. [4] 孟代江. 智能材料结构系统在工程设备中的应用[J]. 中国设备工程, 2017(1): 140-141. [5] 康荣杰, 杨铖浩, 杨名远, 等. 会思考的机器——机械智能[J]. 机械工程学报, 2018, 54(13): 15-24. [6] CIANCHETTI M, ARIENTI A, FOLLADOR M, et al. Design concept and validation of a robotic arm inspired by the octopus[J]. Materials Science and Engineering: C, 2011, 31(6): 1230-1239. [7] CIANCHETTI M, FOLLADOR M, MAZZOLAI B, et al. Design and development of a soft robotic octopus arm exploiting embodied intelligence[C]//IEEE International Conference on Robotics & Automation. Saint Paul, MN, USA: IEEE, 2012: 5271-5276. [8] LASCHI C, CIANCHETTI M, MAZZOLAI B, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012, 26(7): 709-727. [9] LI Y, CHEN Y, YANG Y, et al. Passive particle jamming and its stiffening of soft robotic grippers[J]. IEEE Transactions on Robotics, 2017, 33(2): 446-455. [10] LOEVE A J, VEN O, VOGEL J G, et al. Vacuum packed particles as flexible endoscope guides with controllable rigidity[J]. Granular Matter, 2010, 12(6): 543-554. [11] AMEND J R, BROWN E, RODENBERG N, et al. A positive pressure universal gripper based on the jamming of granular material[J]. IEEE Transactions on Robotics, 2012, 28(2): 341-350. [12] KIM J Y, CHENG S, KIM S, et al. A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery[J]. IEEE Transactions on Robotics, 2013, 29(4): 1031-1042. [13] IMAMURA H, KADOOKA K, TAYA M. A variable stiffness dielectric elastomer actuator based on electrostatic chucking[J]. Soft Matter, 2017, 13(18): 3440-3448. [14] WANG T, ZHANG J H, LI Y, et al. Electrostatic layer jamming variable stiffness for soft robotics[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 424-433. [15] 张玉梅, 王华平. MDSC的原理与应用[J]. 中国纺织大学学报, 2000, 26(3): 118-122. [16] 张雪芹, 郝伟萍. 调制差示扫描量热法研究玻璃化转变温度[J]. 理化检验(化学分册), 2001, 37(12): 544-546. |