[1] DINH V H, TRAN N T, VU T L, et al. Design of planar wound composite vessel based on preventing slippage tendency of fibers[J]. Composite Structures, 2020, 254(3): 112854. [2] 程勇, 侯晓, 张世杰, 等. 纺丝工艺对炭纤维缠绕复合材料强度转化率的影响[J]. 固体火箭技术, 2017, 40(2): 239-243. [3] HARADA S, ARAI Y, ARAKI W, et al.A simplified method for predicting burst pressure of type Ⅲ filament-wound CFRP composite vessels considering the inhomogeneity of fiber packing[J]. Composite Structures, 2018, 190(4): 79-90. [4] 刘鎏, 张蕾蕾, 宋学宇, 等. 复合材料壳体挂机飞行一体化结构优化设计分析[J]. 固体火箭技术, 2019, 42(6): 679-685. [5] PAKNAHAD A, FATHI A, GOUDARZI A M, et al. Optimum head design of filament wound composite pressure vessels using a hybrid model of FE analysis and inertia weight PSO algorithm[J]. International Journal of Material Forming, 2014, 9(1): 1-9. [6] 颜标, 郭凯特, 校金友. 考虑渐进损伤的纤维缠绕复合材料圆筒铺层顺序优化设计[J]. 固体火箭技术, 2020, 43(4): 468-475. [7] JI Z, CHEN J, ZHENG Y, et al. Dome shape optimization of filament-wound composite pressure vessels based on hyperelliptic functions considering both geodesic and non-geodesic winding patterns[J]. Journal of Composite Materials, 2016, 51(14). [8] ZU L, XU H, JIA X L, et al. Winding path design based on mandrel profile updates of composite pressure vessels[J].Composite Structures, 2020, 235: 111766. [9] 尤军峰, 刘浩, 王春光. 固体火箭发动机复合材料壳体细观力学仿真分析[J]. 固体火箭技术, 2018, 41(5): 549-555, 579. [10] GOLUSHKO S. Mathematical problems of calculation and optimization of composite structures[J]. Journal of Physics: Conference Series, 2020, 1666(1): 012012. [11] 王震鸣, 刘国玺, 吕明身. 各向异性多层扁壳的大挠度方程[J]. 应用数学和力学, 1982(1): 49-65. [12] DONA C, ARGHYA G, DI-PANKAR C. Finite element prediction of firstply failure loads of composite thin skewed hypar shells using nonlinear strains[J]. Thin Walled Structures, 2021, 167: 108159. [13] 孙雪坤, 郭艳阳, 杜善义, 等. 纤维缠绕固体火箭发动机壳体的应力及强度分析[J]. 复合材料学报, 1997(1): 116-121. [14] 徐后华, 洪志泉, 王毅. 三种复合材料回转壳元素的分析比较[J]. 国防科技大学学报, 1986(4): 77-88. [15] S.铁摩幸柯, S.沃诺斯基. 板壳理论[M].《板壳理论》翻译组, 译. 北京: 科学出版社, 1977: 573-609. [16] LAKSHMINARAYANA H V. Finite element analysis of laminated composite shell junctions[J]. Computers & Structures, 1976, 6(1): 11-15. [17] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 378-386. [18] KARMAN T V, TSIEN H S. The buckling of thin cylindri-cal shells under axial compression[J]. Journal of Spacecraft and Rockets, 2003. [19] JU J, PICKLE, D BRENT, et al. An initial and progressive failure analysis for cryogenic composite fuel tank design[J]. Journal of Composite Materials, 2008, 42(6): 569-592. [20] MOHAMMADREZAZADEH S, JAFARI A A. Nonlinear vibration analysis of laminated composite angle-ply cylindrical and conical shells[J]. Composite Structures, 2021, 255: 112867. [21] 矫维成, 王荣国, 刘文博, 等. 纤维缠绕复合材料压力容器封头厚度预测[J]. 复合材料学报, 2010, 27(5): 116-121. [22] HONG N T. Nonlinear static bending and free vibration analysis of bidirectional functionally graded material plates[J]. International Journal of Aerospace Engineering, 2020(4): 1-16. [23] 刘北辰. 工程计算力学-理论与应用[M]. 北京: 机械工业出版社, 1994: 435-465. [24] KOUSSIOS S,BERGSMA O K, MITCHELL G. Nongeodesic filament winding on generic shells of revolution[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2005, 219(1): 25-35. [25] 祖磊, 金书明, 张骞, 等. 基于精细化模型的纤维缠绕压力容器失效行为及容积特性影响因素分析[J]. 复合材料科学与工程, 2021(12): 40-47. |