复合材料科学与工程 ›› 2022, Vol. 0 ›› Issue (10): 107-118.DOI: 10.19936/j.cnki.2096-8000.20221028.016
刘永胜, 曹立阳, 张运海, 曹晔洁, 王晶, 董宁
收稿日期:
2022-06-27
出版日期:
2022-10-28
发布日期:
2022-11-01
作者简介:
刘永胜(1975-),男,博士,教授,主要从事陶瓷基复合材料的高导热耐烧蚀、抗水氧腐蚀以及3D打印等方面的研究,yongshengliu@nwpu.edu.cn。
基金资助:
LIU Yong-sheng, CAO Li-yang, ZHANG Yun-hai, CAO Ye-jie, WANG Jing, DONG Ning
Received:
2022-06-27
Online:
2022-10-28
Published:
2022-11-01
摘要: 热防护系统是高超声速飞行器的关键技术之一,决定了飞行器研制的成败,而高温热防护材料则直接决定了热防护系统的性能。本文综述了以C/C复合材料、C/SiC复合材料、C/UHTC复合材料等为代表的热防护用超高温复合材料的研究进展,并重点分析了近年来超高温复合材料导热和烧蚀性能相关的研究进展,进而提出了未来发展方向,为热防护用超高温复合材料的发展提供参考。
中图分类号:
刘永胜, 曹立阳, 张运海, 曹晔洁, 王晶, 董宁. 高超声速飞行器热防护用超高温复合材料的研究进展[J]. 复合材料科学与工程, 2022, 0(10): 107-118.
LIU Yong-sheng, CAO Li-yang, ZHANG Yun-hai, CAO Ye-jie, WANG Jing, DONG Ning. Research progress on ultra-high temperature composites for thermal protection of hypersonic vehicles[J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(10): 107-118.
[1] 陈召斌, 廖孟豪, 李飞, 等. 高超声速飞机总体气动布局设计特点分析[J]. 航空科学技术, 2022(33): 6-11. [2] 梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021(42): 409-424. [3] 徐世南, 吴催生. 高超声速飞行器热防护材料研究进展[J]. 机械研究与应用, 2018, 31(5): 221-226. [4] 杜善义, 方岱宁, 孟松鹤, 等. “近空间飞行器的关键基础科学问题”重大研究计划结题综述[J]. 中国科学基金, 2017(31): 109-114. [5] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017(38): 311-390. [6] 解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019(40): 6-22. [7] BEHRENS B, MÜLLER M. Technologies for thermal protection systems applied on re-usable launcher[J]. Acta Astronautica, 2004, 55(3-9): 529-536. [8] 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020(41): 6-40. [9] 杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展[J]. 应用数学和力学, 2008: 47-56. [10] 冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020(48): 14-24. [11] 成来飞, 张立同, 梅辉, 等. 化学气相渗透工艺制备陶瓷基复合材料[J]. 上海大学学报(自然科学版), 2014(20): 15-32. [12] 刘跃, 付前刚, 李贺军, 等. 反应熔体渗透法制备C/C-SiC复合材料的微观结构及抗氧化性能[J]. 中国材料进展, 2016(35): 128-135. [13] 王东, 王玉金. 碳化锆陶瓷复合材料的制备、显微组织与性能[J]. 无机材料学报, 2015, 30(5): 449-458. [14] GUO S Q. Densification of ZrB2-based composites and their mechanical and physical properties: A review[J]. Journal of the European Ceramic Society, 2009, 29(6): 995-1011. [15] 闫联生, 邹武. 化学气相渗透法制备碳化硅陶瓷复合材料[J]. 固体火箭技术, 1998(1): 56-61. [16] 聂景江. 三维针刺C/SiC复合材料的环境性能和结构演变[D]. 西安: 西北工业大学, 2009. [17] KOHYAMA A, KOTANI M, KATOH Y, et al. High-performance SiC/SiC composites by improved PIP processing with new precursor polymers[J]. Journal of Nuclear Materials, 2000, 283: 565-569. [18] 虎琳, 肖志超, 张永辉. C/C-SiC复合材料的RMI法制备研究进展[J]. 炭素, 2017(1): 29-35. [19] KATOH Y, DONG S M, KOHYAMA A. A novel processing technique of silicon carbide-based ceramic composites for high temperature applications[C]. International Symposium on SiC/SiC Composite Materials Research and Development and Its Application to Advanced Energy Systems. 2002: 77-86. [20] 何慧娟. ZrB2-SiC超高温陶瓷压入力学性能与高温氧化[D]. 太原: 太原理工大学, 2021. [21] GUO S Q, NISHIMURA T, KAGAWA Y, et al. Spark plasma sintering of zirconium diborides[J]. Journal of the American Ceramic Society, 2008, 91(9): 2848-2855. [22] 刘军芳. 放电等离子烧结法制备氮化铝透明陶瓷[D]. 武汉: 武汉理工大学, 2002. [23] 于澍, 刘根山, 李溪滨, 等. 炭/炭复合材料导热系数影响因素的研究[J]. 稀有金属材料与工程, 2003(3): 213-215. [24] OBERLIN A. Pyrocarbons[J]. Carbon, 2002, 40(1): 7-24. [25] CHEN Y M, TING J M. Ultra high thermal conductivity polymer composites[J]. Carbon, 2002, 40(3): 359-362. [26] BONAL J P, WU C H. Neutron irradiation effects on the thermal conductivity and dimensional stability of carbon fiber composites at divertor conditions[J]. Journal of Nuclear Materials, 1996, 228(2): 155-161. [27] LIU Z Y, ZHANG G D, LI H, et al. Al infiltrated C-C hybrid composites[J]. Materials & Design, 2005, 26(1): 83-87. [28] CENTENO A, SANTAMARIA R, GRANDA M, et al. Improvement of thermal conductivity in 2D carbon-carbon composites by doping with TiC nanoparticles[J]. Materials Chemistry and Physics, 2010, 122(1): 102-107. [29] QIU H, HAN L, LIU L. Properties and microstructure of graphitised ZrC/C or SiC/C composites[J]. Carbon, 2005, 43(5): 1021-1025. [30] 李崇俊. MPCF增强的C/C复合材料及其在高超音速飞行器的应用[J]. 高科技纤维与应用, 2015, 40(3): 8-14. [31] 张贤. ZrC/ZrB2有机前驱体的合成及其改性高导热C/C复合材料研究[D]. 武汉: 武汉科技大学, 2016. [32] 杨平军. 高导热C/C复合材料的制备及其热防护性能研究[D]. 湘潭: 湖南大学, 2018. [33] 朱晓军, 李锋, 欧东斌, 等. 高导C/C材料在疏导式热防护中的应用探索[J]. 力学季刊, 2020(41): 171-178. [34] KOWBEL W, LOUTFY R. Dual space technology transfer[C]//Space, Propulsion & Energy Sciences International Forum-SPESIF2009. 2009. [35] 林剑锋, 袁观明, 李轩科, 等. 一维高导热C/C复合材料的制备研究[J]. 无机材料学报, 2013(28): 1338-1344. [36] GOLECKI I, XUE L, LEUNG R, et al. Properties of high thermal conductivity carbon-carbon composites for thermal management applications[C]//1998 High-Temperature Electronic Materials, Devices and Sensors Conference (Cat. No.98EX132). 1998: 190-195. [37] 樊桢, 余立琼, 李炜, 等. 高导热碳/碳复合材料的设计与制备[J]. 中国材料进展, 2017(36): 369-376. [38] MANOCHA L M, WARRIER A, MANOCHA S, et al. Thermophysical properties of densified pitch based carbon/carbon materials-Ⅰ. Unidirectional composites[J]. Carbon, 2006, 44(3): 480-487. [39] 阮家苗, 李红, 姚彧敏, 等. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021(49): 128-134. [40] HU J, DONG S, WU B, et al. Mechanical and thermal properties of Cf/SiC composites reinforced with carbon nanotube grown in situ[J]. Ceramics International, 2013, 39(3): 3387-3391. [41] HU Z, DONG S, HU J, et al. Fabrication and properties analysis of Cf-CNT/SiC composite[J]. Ceramics International, 2013, 39(2): 2147-2152. [42] FENG W, ZHANG L, LIU Y, et al. Thermal and mechanical properties of SiC/SiC-CNTs composites fabricated by CVI combined with electrophoretic deposition[J]. Materials Science and Engineering: A, 2015, 626: 500-504. [43] FENG W, ZHANG L, LIU Y, et al. The improvement in the mechanical and thermal properties of SiC/SiC composites by introducing CNTs into the PyC interface[J]. Materials Science and Engineering: A, 2015, 637: 123-129. [44] FENG W, ZHANG L T, LIU Y S, et al. Thermal and mechanical properties of SiC/SiC-CNTs composites fabricated by CVI combined with electrophoretic deposition[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2015, 626: 500-504. [45] YANG J, SPRENGARD J, JU L, et al. Three-dimensional-linked carbon fiber-carbon nanotube hybrid structure for enhancing thermal conductivity of silicon carbonitride matrix composites[J]. Carbon, 2016, 108: 38-46. [46] LI Z X, LI X Q, ZHANG B X, et al. Enhanced thermal and mechanical properties of optimized SiCf/SiC composites with in-situ CNTs on PyC interface[J]. Ceramics International, 2020, 46(11): 18071-18078. [47] ZHAO S, YANG Z C, ZHOU X G, et al. Fabrication and characterization of in-situ grown carbon nanotubes reinforced SiC/SiC composite[J]. Ceramics International, 2016, 42(7): 9264-9269. [48] LI J, LIU Y, CHEN C, et al. Effect of diamond content on microstructure and properties of C/SiC-diamond composites[J]. Diamond and Related Materials, 2020, 107: 107902. [49] LI J X, LIU Y S, CHEN C, et al. Effects of phenolic resin contents on microstructures and properties of C/SiC-diamond composites[J]. Journal of the American Ceramic Society, 2021, 104(7): 3424-3442. [50] CHEN L, YANG X, SU Z A, et al. Fabrication and performance of micro-diamond modified C/SiC composites via precursor impregnation and pyrolysis process[J]. Ceramics International, 2018, 44(8): 9601-9608. [51] ZHAO Z F, LIU Y S, FENG W, et al. Improvement on the thermal conductivity of Diamond/CVI-SiC composites using large diamond particles[J]. Diamond and Related Materials, 2017, 74: 1-8. [52] LI J X, LIU Y S, NAN B Y, et al. Microstructure and properties of C/SiC-Diamond composites prepared by the combination of CVI and RMI[J]. Advanced Engineering Materials, 2019, 21(5): 11. [53] 王旭磊. 液相硅熔渗制备金刚石/碳化硅复合材料及性能研究[D]. 北京: 北京科技大学, 2021. [54] 蔡榕. PIP制备ZrB2/高导热石墨膜改性C/SiC复合材料及其性能研究[D]. 北京: 北京化工大学, 2019. [55] ZHAO J J, CAI R, MA Z K, et al. Preparation and properties of C/SiC composites reinforced by high thermal conductivity graphite films[J]. Diamond and Related Materials, 2021, 116(10): 108376. [56] CAI Y Z, CHENG L F, ZHANG H J, et al. Effects of graphite filler on the thermophysical properties of 3D C/SiC composites[J]. Journal of Alloys and Compounds, 2019, 770: 989-994. [57] FAN X, YIN X, CAO X, et al. Improvement of the mechanical and thermophysical properties of C/SiC composites fabricated by liquid silicon infiltration[J]. Composites Science and Technology, 2015, 115: 21-27. [58] TAO P, LIU W, WANG Y. Fabrication of SiCf/Ti3SiC2 composites with high thermal conductivity by spark plasma sintering[J]. Ceramics International, 2020, 46(2): 2571-2575. [59] CHEN S, FENG Y, QIN M, et al. Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes[J]. Carbon, 2017, 116: 84-93. [60] FENG W, ZHANG L T, LIU Y S, et al. Increasing the thermal conductivity of 2D SiC/SiC composites by heat-treatment[J]. Fusion Engineering and Design, 2015, 90: 110-118. [61] SUN Z, SHAN Z, SHAO T. A comparative study for the thermal conductivities of C/SiC composites with different preform architectures fabricating by flexible oriented woven process[J]. International Journal of Heat and Mass Transfer, 2021, 170(1-3): 120973. [62] 虎琳, 李崇俊, 张永辉. RMI法制备C/C-SiC炭陶复合材料的热学性能研究[J]. 炭素技术, 2017, 36(6): 24-27, 37. [63] 庞菲, 唐萍萍, 张力. C/C坯体对C/SiC复合材料组织结构和导热性能的影响[J]. 高科技纤维与应用, 2018, 43(4): 38-43. [64] 李专, 肖鹏, 熊翔, 等. C/C-SiC复合材料的导热性能及其影响因素[J]. 中南大学学报(自然科学版), 2013, 44(1): 40-45. [65] 虎琳, 李崇俊, 张永辉. C/C多孔体热处理温度对C/C-SiC复合材料微观结构和热学性能的影响[J]. 炭素, 2018(1): 18-23. [66] 曹宇, 刘荣军, 曹英斌, 等. 素坯密度对气相渗硅制备C/C-SiC复合材料结构与性能的影响[J]. 材料工程, 2016, 44(7): 19-25. [67] 黄立叶, 孙海成, 张鸿翔, 等. 高导热C/C复合材料的制备技术研究进展[C]//第三届中国国际复合材料科技大会. 2017: 569-573. [68] 索勋. 高热导率C/SiC复合材料的制备与性能研究[D]. 北京: 北京化工大学, 2018. [69] GUO S. Thermal and electrical properties of hot-pressed short pitch-based carbon fiber-reinforced ZrB2-SiC matrix composites[J]. Ceramics International, 2013, 39(5): 5733-5740. [70] GUO S, NAITO K, KAGAWA Y. Mechanical and physical behaviors of short pitch-based carbon fiber-reinforced HfB2-SiC matrix composites[J]. Ceramics International, 2013, 39(2): 1567-1574. [71] HUANG D, LIU Q, ZHANG Y, et al. Ablation behavior and thermal conduction mechanism of 3D ZrC-SiC-modified carbon/carbon composite having high thermal conductivity using mesophase-pitch-based carbon fibers and pyrocarbon as heat transfer channels[J]. Composites Part B: Engineering, 2021, 224: 109201. [72] HUANG D, TAN R, LIU L, et al. Preparation and properties of the three-dimensional highly thermal conductive carbon/carbon-silicon carbide composite using the mesophase-pitch-based carbon fibers and pyrocarbon as thermal diffusion channels[J]. Journal of the European Ceramic Society, 2021, 41(8): 4438-4446. [73] FENG W, ZHANG L, LIU Y, et al. Fabrication of SiCf-CNTs/SiC composites with high thermal conductivity by vacuum filtration combined with CVI[J]. Materials Science and Engineering: A, 2016, 662: 506-510. [74] TAGUCHI T, HASEGAWA Y, SHAMOTO S. Effect of carbon nanofiber dispersion on the properties of PIP-SiC/SiC composites[J]. Journal of Nuclear Materials, 2011, 417(1-3): 348-352. [75] TAGUCHI T, IGAWA N, JITSUKAWA S, et al. Fabrication of SiC/SiC with dispersed carbon nano-fibers composites for excellent thermal properties[C]//29th International Conference on Advanced Ceramics and Composites. 2005: 327-334. [76] TAO P, WANG Y. Improved thermal conductivity of silicon carbide fibers-reinforced silicon carbide matrix composites by chemical vapor infiltration method[J]. Ceramics International, 2019, 45(2): 2207- 2212. [77] 张姗姗. 高导热石墨膜增强C/C复合材料的制备与结构性能研究[D]. 北京: 北京化工大学, 2018. [78] SHEEHAN J E. Oxidation protection for carbon fiber composites[J]. Carbon, 1989, 27(5): 709-715. [79] WESTWOOD M E, WEBSTER J D, DAY R J, et al. Oxidation protection for carbon fibre composites[J]. Journal of Materials Science, 1996, 31(6): 1389-1397. [80] XUE L, SU Z A, YANG X, et al. Microstructure and ablation behavior of C/C-HfC composites prepared by precursor infiltration and pyrolysis[J]. Corrosion Science, 2015, 94: 165-170. [81] LI H, WANG Y, FU Q, et al. SiC Nanowires toughed HfC ablative coating for C/C composites[J]. Journal of Materials Science & Technology, 2015, 31(1): 70-76. [82] SHEN X T, LIU L, LI W, et al. Ablation behaviour of C/C-ZrC composites in a solid rocket motor environment[J]. Ceramics International, 2015, 41(9): 11793-11803. [83] YANG X, SU Z, HUANG Q, et al. Ablation behavior and mechanism of C/C-ZrC composites under oxyacetylene torch flame[J]. Materials China, 2011, 30(11): 32-38. [84] XIONG X, WANG Y L, CHEN Z K, et al. Mechanical properties and fracture behaviors of C/C composites with PyC/TaC/PyC, PyC/SiC/TaC/PyC multi-interlayers[J]. Solid State Sciences, 2009, 11(8): 1386-1392. [85] CHEN Z K, XIONG X A, LI G D, et al. Texture structure and ablation behavior of TaC coating on carbon/carbon composites[J]. Applied Surface Science, 2010, 257(2): 656-661. [86] 常亚彬, 孙威, 熊翔, 等. Al-Si-C改性C/C复合材料的微结构特征与烧蚀行为[J]. 新型炭材料, 2016(31): 628-638. [87] WANG S, ZHU Y L, CHEN H M, et al. Effect of Cu on the ablation properties of Cf/ZrC composites fabricated by infiltrating Cf/C preforms with Zr-Cu alloys[J]. Ceramics International, 2015, 41(4): 5976-5983. [88] 俞逸斯, 李明佳, 李冬, 等. C/SiC复合材料碳纤维氧化烧蚀机理研究[J]. 工程热物理学报, 2022(43): 1068-1072. [89] 赵幸. PIP法制备C/SiC-ZrB2复合材料及其烧蚀性能研究[D]. 西安: 西北工业大学, 2016. [90] 段刘阳. C/SiC-HfC复合材料的制备与烧蚀性能研究[D]. 西安: 西北工业大学, 2015. [91] 武海棠, 魏玺, 于守泉, 等. 整体抗氧化C/C-ZrC-SiC复合材料的超高温烧蚀性能研究[J]. 无机材料学报, 2011, 26: 852-856. [92] ZHAO L Y, JIA D C, DUAN X M, et al. Oxidation of ZrC-30vol% SiC composite in air from low to ultrahigh temperature[J]. Journal of the European Ceramic Society, 2012, 32(4): 947-954. [93] CHEN S A, HU H, ZHANG Y, et al. Effects of TaC amount on the properties of 2D C/SiC-TaC composites prepared via precursor infiltration and pyrolysis[J]. Materials & Design, 2013, 51: 19-24. [94] WANG L, YAN L, GUO C, et al. Anti-ablative property of (C/C)/SiC-ZrC composites with different ZrC content[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2250-2257. [95] 魏玺, 李捷文, 张伟刚. HfB2-HfC-SiC改性C/C复合材料的超高温烧蚀性能研究[J]. 装备环境工程, 2016, 13(3): 12-17. [96] CAO L, LIU Y, ZHANG Y, et al. Enhancing thermal conductivity of C/SiC composites containing heat transfer channels[J]. Journal of the European Ceramic Society, 2020, 40(10): 3520-3527. [97] ZHANG Y, LIU Y, CAO Y, et al. Effect of well-designed graphene heat conductive channel on the thermal conductivity of C/SiC composites[J]. Ceramics International, 2021, 47(13): 19115-19122. [98] ZHANG Y H, LIU Y S, CAO Y J, et al. Effect of initial density on thermal conductivity of new micro-pipeline heat conduction C/SiC composites[J]. Journal of the American Ceramic Society, 2021, 104(1): 645-653. [99] LI J X, LIU Y S, CHEN J, et al. Improved thermal conductivity and mechanical properties of SiC/SiC composites using pitch-based carbon fibers[J]. Ceramics International, 2022, 48(8): 10770-10778. [100] ZHANG Y, LIU Y, CAO L, et al. Construction of continuous heat conductive channel, a double harvest strategy to enhance thermal conductance and bending strength of C/SiC composites[J]. Journal of Materials Science & Technology, 2022, 105: 101-108. [101] ZHANG Y H, LIU Y S, CAO L Y, et al. Three-dimensional micro-pipelines high thermal conductive C/SiC composites[J]. Ceramics International, 2021, 47(24): 34333-34340. [102] CAO L Y, LIU Y S, ZHANG Y H, et al. Thermal conductivity and bending strength of SiC composites reinforced by pitch-based carbon fibers[J]. Journal of Advanced Ceramics, 2022, 11(2): 247-262. [103] CAO L Y, WANG J, LIU Y S, et al. Effect of heat transfer channels on thermal conductivity of silicon carbide composites reinforced with pitch-based carbon fibers[J]. Journal of the European Ceramic Society, 2022, 42(2): 420-431. [104] HU C L, PANG S Y, TANG S F, et al. Ablation and mechanical behavior of a sandwich-structured composite with an inner layer of Cf/SiC between two outer layers of Cf/SiC-ZrB2-ZrC[J]. Corrosion Science, 2014, 80: 154-163. [105] TANG S F, DENG J Y, WANG S J, et al. Ablation behaviors of ultra-high temperature ceramic composites[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007, 465(1-2): 1-7. [106] 汤素芳, 胡成龙, 熊艳丽, 等. 超高温陶瓷改性碳基/陶瓷基复合材料的多尺度构筑与性能研究进展[J]. 装备环境工程, 2019(16): 40-48. [107] 尹健, 熊翔, 张红波, 等. 固体火箭发动机喷管用C/C复合材料的研究进展[J]. 材料导报, 2004(4): 46-48. [108] 彭丽娜. C/C喉衬热化学烧蚀机理与多尺度模型[D]. 西安: 西北工业大学, 2013. [109] 张晓虎, 李贺军, 郝志彪, 等. 喷管炭-炭材料出口锥预制体技术[J]. 材料导报, 2007(2): 98-101. [110] 朱良杰, 廖东娟. C/C复合材料在美国导弹上的应用[J]. 宇航材料工艺, 1993(4): 12-14. [111] 李蕴欣, 张绍维, 周瑞发. 碳/碳复合材料[J]. 材料科学与工程, 1996(2): 6-14, 20. [112] 黄伯云, 肖鹏, 陈康华. 复合材料研究新进展(上)[J]. 金属世界, 2007(2): 46-48. [113] 李娜. FeSi75改性C/C-SiC刹车材料的性能优化[D]. 西安: 长安大学, 2017. [114] 高性能C/SiC刹车材料及其优化设计[J]. 复合材料学报, 2008(2): 101-108. [115] C/C-SiC陶瓷制动材料的研究现状与应用[J]. 中国有色金属学报, 2005: 667-674. [116] KRENKEL W, HEIDENREICH B, RENZ R. C/C-SiC composites for advanced friction systems[J]. Advanced Engineering Materials, 2002, 4(7): 427-436. [117] KIRNER E, THELEMANN D, WOLF D. Development status of the vulcain thrust chamber[J]. Acta Astronautica, 1993, 29(4): 271-282. [118] SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2004, 55(3-9): 409-420. [119] 马青松, 刘海韬, 潘余, 等. C/SiC复合材料在超燃冲压发动机中的应用研究进展[J]. 无机材料学报, 2013(28): 247-255. [120] 刘萝威. C/SiC复合材料主动冷却超燃冲压发动机燃烧室研究[J]. 飞航导弹, 2005(12): 53-58. [121] 史云良. PCS/LPVCS先驱体转化制备Cf/SiC与SiCf/SiC复合材料的结构与性能[D]. 长沙: 国防科技大学, 2017. [122] 朱家缔. C/C-ZrC复合材料的制备及性能研究[D]. 北京: 中国运载火箭技术研究院, 2021. [123] 曾毅. Zr-Ti合金反应熔渗改性C/C复合材料的研究[D]. 长沙: 中南大学, 2013. [124] KUMAR S, KUMAR A, SAMPATH K, et al. Fabrication and erosion studies of C-SiC composite Jet Vanes in solid rocket motor exhaust[J]. Journal of the European Ceramic Society, 2011, 31(13): 2425-2431. |
[1] | 蒙怡, 杨胜春, 刘小川, 杨海龙, 宋贵宾. 2.5D-C/C复合材料压缩试样构型及损伤失效试验研究[J]. 复合材料科学与工程, 2023, 0(9): 48-54. |
[2] | 沈昊辰, 牛波, 张琪凯, 郝晶莹, 张亚运, 龙东辉. 2.5D石英纤维增强纳米孔酚醛树脂基复合材料的力学和传热性能[J]. 复合材料科学与工程, 2023, 0(4): 5-13. |
[3] | 施伟伟, 张艳萍, 任金伟, 韩文静, 张挺. C/C-SiC刹车材料摩擦面出现沟槽的机理及其影响研究[J]. 复合材料科学与工程, 2023, 0(3): 95-98. |
[4] | 侯党社, 李克智. C/C复合材料SiC-Mo(Si,Al)2涂层结构和抗氧化性能研究[J]. 复合材料科学与工程, 2021, 0(8): 91-94. |
[5] | 王龙, 刘武刚, 孔凡金, 张跃平, 原凯. X射线CT在C/SiC复合材料微观结构和损伤表征中的应用[J]. 复合材料科学与工程, 2021, 0(6): 72-76. |
[6] | 束长朋, 杨鹏翱, 施正堂, 周权. 高碳酚醛树脂及其复合材料的炭化性能演变[J]. 玻璃钢/复合材料, 2019, 0(3): 76-81. |
[7] | 刘伟, 刘荣军, 曹英斌, 杨会永. C/C预制体孔隙率与气相硅浸渗制备C/SiC复合材料性能关系的模型研究[J]. 复合材料科学与工程, 2013, 0(2): 52-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||