[1] SHIRVANIMOGHADDAM K, HAMIM S U, AKBARI M K, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties[J]. Composites Part A, 2017, 92: 70-96. [2] 石川, 雷剑波, 周圣丰, 等. 连续纤维增强金属基复合材料研究进展及其激光熔覆[J]. 激光与光电子学进展, 2017, 54(6): 30-40. [3] 李佩桓, 张勇, 王涛, 等. 连续SiC纤维增强金属基复合材料研究进展[J]. 材料工程, 2016, 44(8): 121-129. [4] 王军, 严彪, 徐政. 金属基复合材料的发展和未来[J]. 上海有色金属, 1999(4): 188-192. [5] LIANG H W, LIU J W, QIAN H S, et al. Multiplex templating process in one-dimensional nanoscale: Controllable synthesis, macroscopic assemblies, and applications[J]. Accounts of chemical research, 2013, 46(7): 1450-1461. [6] LIANG H W, ZHANG W J, MA Y N, et al. Highly active carbonaceous nanofibers: A versatile scaffold for constructing multifunctional free-standing membranes[J]. ACS Nano, 2011, 5(10): 8148-8161. [7] 郭玉明, 冯志海, 等. 高性能PAN基碳纤维及其复合材料在航天领域的应用[J]. 高科技纤维与应用, 2007(5): 1-7, 17. [8] 朱和文, 张爱文. 复合材料原理[M]. 北京: 国防工业出版社, 2013. [9] 郝元恺, 肖加余. 高性能复合材料学[M]. 北京: 化学工业出版社, 2004. [10] 许丽丹, 王澜. 碳纤维增强树脂基复合材料的应用研究[J]. 塑料制造, 2007(Z1): 81-85. [11] GOMZIN A I, GALLYAMOVA R F, ZARIPOV N G, et al. The chemical reactivity comparison of high-modulus and high-strength carbon fibers[J]. Materials Science Forum, 2020, 5940: 347-352. [12] 蒋诗才, 李伟东, 李韶亮, 等. PAN基高模量碳纤维及其应用现状[J]. 高科技纤维与应用, 2020, 45(2): 1-10. [13] 钱伯章. M60J高强高模碳纤维关键制备技术获突破[J]. 合成纤维, 2018, 47(4): 53. [14] 中科院宁波材料所. 高强高模碳纤维国产化制备技术取得重大突破[J]. 高科技纤维与应用, 2016, 41(1): 79. [15] 马祥林. 高强高模碳纤维产业化项目签约[J]. 合成纤维工业, 2015, 38(3): 66. [16] WEN Y, LU Y G, XIAO H, et al. Further investigation on boric acid catalytic graphitization of polyacrylonitrile carbon fibers: Mechanism and mechanical properties[J]. Materials and Design, 2011, 36: 728-734. [17] 沈曾民, 迟伟东, 张学军, 等. 高模量碳纤维的现状及发展(1)[J]. 高科技纤维与应用, 2010, 35(3):5-13. [18] 李东风, 王浩静, 薛林兵, 等. PAN基碳纤维连续石墨化过程中的取向性[J]. 化工进展, 2006(9): 1101-1104, 1109. [19] 沃西源. 国内外几种碳纤维性能比较及初步分析[J]. 高科技纤维与应用, 2000(2): 30-36. [20] 王燕, 朱晓林, 朱宇宏, 等. 金属基复合材料概述[J]. 中国标准化, 2013(5): 33-37, 47. [21] 李玲玲. 金属基复合材料的制备技术与运用[J]. 科技风, 2012(12): 73-76, 82. [22] 陈素玲, 孙学杰. 金属基复合材料的分类及制造技术研究进展[J]. 电焊机, 2011, 41(7): 90-94. [23] 关明, 常志梁. 金属基复合材料制备技术的进展[J]. 热加工工艺, 2010, 39(16): 93-95. [24] 朱和国, 张爱文. 复合材料原理[M]. 北京: 国防工业出版社, 2013: 192-193. [25] 刘晨曦, 于惠舒, 张楠楠, 等. 碳纤维增强铝基复合材料的研究现状[J]. 钢铁研究学报, 2021, 33(12): 1205-1218. [26] DUCHOSLAV J, UNTERWEGER C, STEINBERGER R, et al. Investigation on the thermo-oxidative stability of carbon fiber sizings for application in thermoplastic composites[J]. Polymer Degradation and Stability, 2016, 125: 33-42. [27] 刘献华. 不同结构碳增强铝基复合材料的制备及组织性能研究[D]. 合肥: 合肥工业大学, 2013. [28] WANG Y, HAHN T H. AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjected to hygrothermal treatments[J]. Composites Science and Technology, 2007, 67(1): 92-101. [29] 成小乐, 尹君, 屈银虎, 等. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术及界面特性研究综述[J]. 材料导报, 2018, 32(5): 796-807. [30] 王涛, 赵宇新, 付书红, 等. 连续纤维增强金属基复合材料的研制进展及关键问题[J]. 航空材料学报, 2013, 33(2): 87-96. [31] WARD-CLOSE C M, CHANDRASEKARAN L, ROBERTSON J G, et al. Advances in the fabrication of titanium metal matrix composite[J]. Materials Science and Engineering: A, 1999, 263(2): 314-318. [32] 郭洪波, 彭立全, 宫声凯, 等. 电子束物理气相沉积热障涂层技术研究进展[J]. 热喷涂技术, 2009, 1(2): 7-14. [33] 关春龙, 李垚, 赫晓东. 电子束物理气相沉积技术及其应用现状[J]. 航空制造技术, 2003(11): 35-37. [34] SUBRAMANIAN P R,KRISHNAMURTHY S, KELLER S T, et al. Processing of continuously reinforced Ti-alloy metal matrix composites (MMC) by magnetron sputtering[J]. Materials Science and Engineering: A, 1998, 244(1): 1-10. [35] MORTENSEN A, FLEMINGS M C. Solidification of binary hypoeutectic alloy matrix composite castings[J]. Metallurgical and Materials Transactions A, 1996, 27(3): 595-609. [36] 任富忠, 高家诚, 李伟, 等. 粉末冶金法炭纤维/Mg复合材料的界面对其力学性能的影响[J]. 新型炭材料, 2011, 26(4): 278-286. [37] 赵慧锋, 夏存娟, 马乃恒, 等. 涂层碳纤维增强镁基复合材料[J]. 热加工工艺, 2007(12): 37-39. [38] 崔华, 郝斌, 张济山. 金属基复合材料制备中有害界面反应的控制和润湿性的改善工艺[J]. 铸造, 2006(8): 817-820. [39] VIJAYARAM T R, SULAIMAN S, HAMOUDA A M S, et al. Fabrication of fiber reinforced metal matrix composites by squeeze casting technology[J]. Journal of Materials Processing Tech, 2005, 178(1): 1-5. [40] KÖRNER C, SCHÄFF W, OTTMÜLLER M, et al. Carbon long fiber reinforced magnesium alloys[J]. Advanced Engineering Materials, 2000, 2(6): 327-337. [41] DOHNOMOTO TADASHI, TANAKA ATSUO. Composite material with carbon reinforcing fibers and magnesium alloy matrix including zinc: DE3578829[P]. 1990-8-30. [42] 宋美慧, 武高辉, 王宁, 等. Cf/Mg复合材料热膨胀系数及其计算[J]. 稀有金属材料与工程, 2009, 38(6): 1043-1047. [43] WANG W G, XIAO B L, MA Z Y. Evolution of interfacial nanostructures and stress states in Mg matrix composites reinforced with coated continuous carbon fibers[J]. Composites Science and Technology, 2011, 72(2): 152-158. [44] 李坤, 裴志亮, 宫骏, 等. 碳纤维表面SiO2涂层的制备及其在镁基复合材料中的应用[J]. 金属学报, 2007(12): 1282-1286. [45] 赵慧锋, 夏存娟, 马乃恒, 等. 涂层碳纤维增强镁基复合材料[J]. 热加工工艺, 2007(12): 37-39. [46] 王浩伟, 商宝禄, 郑来苏, 等. 涂层碳纤维增强镁基复合材料[J]. 复合材料学报, 1992(2): 73-76. [47] 李是捷, 周海涛, 应韬, 等. 表面涂覆对碳纤维镁基复合材料组织与性能的影响[J]. 铸造技术, 2021, 42(2): 69-74, 84. [48] 孙振明, 胡小石, 张春雷, 等. 连续碳纤维增强镁基复合材料制备工艺研究[J]. 上海航天, 2019, 36(2): 60-65. [49] FELDHOFF A, PIPPEL E, WOLTERDORF J. Interface engineering of carbon-fiber reinforced Mg-Al alloys[J]. Advanced Engineering Materials, 2000, 2(8): 471-480. [50] 李廷举, 刘嘉鸣, 杨茜, 等. 碳纤维增强铝基复合材料制备及强化机制研究进展[J]. 特种铸造及有色合金, 2020, 40(11): 1177-1181. [51] 杨波, 于杰. 碳纤维增强铝基复合材料的研究进展[J]. 热加工工艺, 2016, 45(8): 16-18. [52] 刘艺, 王华. 连续碳纤维增强铝基复合材料的制备与性能研究[J]. 铸造技术, 2018, 39(6): 1202-1204. [53] 武高辉, 张云鹤, 陈国钦, 等. 碳纤维增强铝基复合材料及其构件的空间环境特性[J]. 载人航天, 2012, 18(1): 73-76, 82. [54] ALHASHMY H A, NGANBE M. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites[J]. Materials and Design, 2015, 67: 154-158. [55] 刘连涛, 孙勇. 纤维增强铝基复合材料研究进展[J]. 南方金属, 2008(6): 1-4, 47. [56] XU P, YU Y H, LIU D W, et al. Enhanced interfacial and mechanical properties of high-modulus carbon fiber composites: Establishing modulus intermediate layer between fiber and matrix based on tailored-modulus epoxy[J]. Composites Science and Technology, 2018, 163: 26-33. [57] SHACKELFORD J F, HAN Y-H, KIM S, et al. CRC materials science and engineering handbook[M]. CRC Press, 2016. [58] TOWATA S, YAMADA S, OHWAKI T. Strength and interfacial reaction of high modulus carbon fiber-reinforced aluminum alloys[J]. Transactions of the Japan Institute of Metals, 1985, 26(8): 563-570. [59] 吕钊钊, 祖宇飞, 沙建军, 等. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324. [60] ZHANG J J, LIU J M, LU Y P, et al. Infiltration behavior and mechanism in semi-solid rolling of carbon fibers reinforced Al-matrix composite[J]. Materials and Design, 2019, 182(C): 917-932. [61] 田书荣, 钱王欢. 柔性受压电铸制备连续碳纤维增强镍基复合材料[J]. 电镀与涂饰, 2019, 38(9): 411-416. [62] 刘建秀, 宋阳, 樊江磊, 等. 碳纤维增强铜基复合材料研究进展[J]. 材料科学与工程学报, 2018, 36(2): 342-346, 240. [63] 欧阳雯婧. 表面改性碳纤维增强铜基复合材料的制备与表征[D]. 兰州: 兰州理工大学, 2016. [64] 李小红, 黎业生, 钟涛生. 冷压烧结法制备碳纤维增强铜基复合材料的研究[J]. 粉末冶金工业, 2014, 24(4): 40-44. [65] 马光, 王轶, 李银娥, 等. Cu/C复合材料的研究现状[J]. 稀有金属快报, 2007(12): 6-10. [66] KORB G, KORÁB J, GROBOTH G. Thermal expansion behaviour of unidirectional carbon-fibre-reinforced copper-matrix composites[J]. Composites Part A, 1998, 29(12): 1563-1567. [67] 钟涛生, 李小红, 王燕齐. 纤维状态对碳纤维-铜基复合材料性能的影响[J]. 电镀与精饰, 2015, 37(1): 1-4. [68] 赵晓宏. 连续碳纤维增强铜基复合材料的制备、组织及性能研究[D]. 天津: 河北工业大学, 2002. [69] SHALU T, ABHILASH E, JOSEPH M A. Development and characterization of liquid carbon fibre reinforced aluminium matrix composite[J]. Journal of Materials Processing Tech, 2008, 209(10): 4809-4813. [70] NADER A. Metal additive manufacturing-state of the art 2020[J]. Metals, 2021, 11(6): 867. [71] PAUL C P, JINOOP A N, KUMAR A, et al. Laser-based metal additive manufacturing: Technology, global scenario and our experiences[J]. Transactions of the Indian National Academy of Engineering, 2021, 6(4): 895-908. [72] PRAGANA J P M, SAMPAIO R F V, BRAGANÇAI M F, et al. Hybrid metal additive manufacturing: A state-of-the-art review[J]. Advances in Industrial and Manufacturing Engineering, 2021 (prepublish): 1. [73] 宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29-39. [74] ZHANG Y H, LI Y, LU W Z, et al. Microstructure and elevated temperature mechanical properties of IN718 alloy fabricated by laser metal deposition[J]. Materials Science and Engineering: A, 2020, 771(C): 138580. [75] XUE A T, LIN X, WANG L L, et al. Influence of trace boron addition on microstructure, tensile properties and their anisotropy of Ti6Al4V fabricated by laser directed energy deposition[J]. Materials and Design, 2019, 181: 107943. [76] HU Y L, LIN X, ZHANG S Y, et al. Huang. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming[J]. Journal of Alloys and Compounds, 2018, 767: 330-344. [77] XU J J, LIN X, GUO P F, et al. The effect of preheating on microstructure and mechanical properties of laser solid forming IN-738LC alloy[J]. Materials Science and Engineering: A, 2017, 691: 71-80. [78] 齐林森. B元素对铁基合金激光成形试样组织与性能的影响[D]. 衡阳: 南华大学, 2017. [79] ZHU Y Y, LIU D, TIAN X J, et al. Characterization of microstructure and mechanical properties of laser melting deposited Ti-65Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Materials and Design, 2013, 56: 445-453. [80] YU J, ROMBOUTS M, MAES G, et al. Material properties of Ti6Al4 V parts produced by laser metal deposition[J]. Physics Procedia, 2012, 39: 416-424. [81] ZHANG Y Z, WEI Z M, SHI L K, et al. Characterization of laser powder deposited Ti-TiC composites and functional gradient materials[J]. Journal of Materials Processing Tech, 2007, 206(1): 438-444. [82] GORUNOV A I. Investigation microstructure of carbon fibers reinforced composite on Fe and Ni-based obtained by laser metal deposition[J]. Surface and Coatings Technology, 2019, 364: 279288. [83] LEI J B, SHI C, ZHOU S F, et al. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding[J]. Surface and Coatings Technology, 2018, 334: 274-285. |