[1] CHEN H, LI S, WANG J, et al. A focused review on the thermo-stamping process and simulation progresses of continuous fibre reinforced thermoplastic composites[J]. Composites Part B: Engineering, 2021, 224: 109196.
[2] SCHUG A, WINKELBAUER J, HINTERHÖLZL R, et al. Thermoforming of glass fibre reinforced polypropylene: A study on the influence of different process parameter[C]//AIP Conference Proceedings. AIP Publishing LLC, 2017: 030010.
[3] WANG P, HAMILA N, BOISSE P. Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix[J]. Composites Part B: Engineering, 2013, 52: 127-136.
[4] WANG P, HAMILA N, PINEAU P, et al. Thermomechanical analysis of thermoplastic composite prepregs using bias-extension test[J]. Journal of Thermoplastic Composite Materials, 2012, 27: 679-698.
[5] KÄRGER L, GALKIN S, ZIMMERLING C, et al. Forming optimisation embedded in a CAE chain to assess and enhance the structural performance of composite components[J]. Composite Structures, 2018, 192: 143-152.
[6] JAUFFRÈS D, SHERWOOD J A, MORRIS C D, et al. Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming[J]. International Journal of Material Forming, 2010(3): 1205-1216.
[7] DANGORA L M, MITCHELL C, WHITE K D, et al. Characterization of temperature-dependent tensile and flexural rigidities of a cross-ply thermoplastic lamina with implementation into a forming model[J]. International Journal of Material Forming, 2018(11): 43-52.
[8] DANGORA L M, MITCHELL C J, SHERWOOD J, et al. Deep-drawing forming trials on a cross-ply thermoplastic lamina for helmet preform manufacture[J]. Journal of Manufacturing Science and Engineering, 2017, 139(3): 031009.
[9] MACHADO M, FISCHLSCHWEIGER M, MAJOR Z. A rate-dependent non-orthogonal constitutive model for describing shear behaviour of woven reinforced thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 194-203.
[10] DÖRR D, SCHIRMAIER F J, HENNING F, et al. A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 94: 113-123.
[11] GUZMAN-MALDONADO E, HAMILA N, BOISSE P, et al. Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastics composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 211-222.
[12] GUZMAN-MALDONADO E, HAMILA N, NAOUAR N, et al. Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization[J]. Materials & Design, 2016, 93: 431-442.
[13] MACHADO M, MURENU L, FISCHLSCHWEIGER M, et al. Analysis of the thermomechanical shear behaviour of woven-reinforced thermoplastic-matrix composites during forming[J]. Composites Part A: Applied Science and Manufacturing, 2016, 86: 39-48.
[14] DÖRR D, JOPPICH T, KUGELE D, et al. A coupled thermomechanical approach for finite element forming simulation of continuously fiber-reinforced semi-crystalline thermoplastics[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105508.
[15] KHAN M, SALEEM W, ASAD M, et al. A parametric sensitivity study on preforming simulations of woven composites using a hypoelastic computational model[J]. Journal of Reinforced Plastics and Composites, 2016, 35: 243-257.
[16] PENG X Q, CAO J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36: 859-874.
[17] 康哲民. 基于响应面法的结构可靠性分析及应用[D]. 广西: 广西科技大学, 2019.
[18] 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 42-45.
[19] BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures[M]. New Jersey: Johnwiley & sons, 2013.
[20] ÇAKMAK U D, MAJOR Z. Experimental thermomechanical analysis of elastomers under uni- and biaxial tensile stress state[J]. Experimental Mechanics, 2014, 54: 653-663.
[21] HUGHES T J R, WINGET J. Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis[J]. International Journal for Numerical Methods in Engineering, 1980, 15: 1862-1867.
[22] DANGORA L M, HANSEN C J, MITCHELL C J, et al. Challenges associated with shear characterization of a cross-ply thermoplastic lamina using picture frame tests[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 181-190.
[23] BOISSE P, HAMILA N, VIDAL-SALLÉ E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology, 2011, 71: 683-692.
[24] 史明, 陈普会. 基于多学科耦合的复合材料帽型加筋板制造仿真[J]. 复合材料学报, 2021, 38(12): 4150-4160.
[25] 胡虹玲, 龚友坤, 彭雄奇, 等. 考虑拉剪耦合的二维编织物各向异性超弹性本构模型[J]. 复合材料学报, 2017, 34(6): 1388-1393.
[26] BOISSE P, HAMILA N, MADEO A. Modelling the development of defects during composite reinforcements and prepreg forming[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374: 20150269.
[27] SYSTÈMES D. ABAQUS 6.14 analysis user’s manual[M]. USA: Dassault Systems Inc Waltham, 2014.
[28] GONG Y, PENG X, YAO Y, et al. An anisotropic hyperelastic constitutive model for thermoplastic woven composite prepregs[J]. Composites Science and Technology, 2016, 128: 17-24.
[29] MAYER G. Eintrag von wärmeenergie in thermoplastische faserverbundwerkstoffe[D]. FH Oberösterreich Wels, 2012.
[30] AZEMATI A A, KHORASANIZADEH H, HADAVAND B, et al. Experimental study on thermal conductivity of polyurethane resin filled with modified nanoparticles[J]. Journal of Computational & Applied Research in Mechanical Engineering, 2018(8): 97-106.
[31] MYERS R H, MONTGOMERY D C, ANDERSON-COOK C M. Response surface methodology: Process and product optimization using designed experiments[M]. USA: John Wiley & Sons, 2016.
[32] DÖRR D. Simulation of the thermoforming process of UD fiber-reinforced thermoplastic tape laminates[D]. Germany: Karlsruher Institut für Technologie, 2021.
[33] DONG C S, WANG G Z. Curvatures estimation on triangular mesh[J]. Journal of Zhejiang University-Science A, 2005(6): 128-136.
[34] RUSINKIEWICZ S. Estimating curvatures and their derivatives on triangle meshes[C]//Proceedings 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. IEEE, 2004: 486-493.
[35] ZIENKIEWICZ O C, TAYLOR R L. The finite element method for solid and structural mechanics[M]. Netherllands: Elsevier, 2005.
[36] BREUER U, NEITZEL M, KETZER V, et al. Deep drawing of fabric-reinforced thermoplastics: Wrinkle formation and their reduction[J]. Polymer Composites, 1996, 17: 643-647.
[37] HOU M. Stamp forming of continuous glass fibre reinforced polypropylene[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28: 695-702.
[38] LESSARD H, LEBRUN G, BENKADDOUR A, et al. Influence of process parameters on the thermostamping of a [0/90]12 carbon/polyether ether ketone laminate[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 59-68.
[39] BONG H J, BARLAT F, LEE J, et al. Application of central composite design for optimization of two-stage forming process using ultra-thin ferritic stainless steel[J]. Metals and Materials International, 2016, 22: 276-287.
[40] DE-LUCA P, LEFÉBURE P, PICKETT A K. Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29: 101-110.
[41] PRODROMOU A G, CHEN J. On the relationship between shear angle and wrinkling of textile composite preforms[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28: 491-503.
[42] VANCLOOSTER K J L U. Forming of multilayered fabric reinforced thermoplastic composites[D]. Leuven: Department of Materials Engineering-miscellaneous, 2010. |