[1] 孙振辉, 铁瑛, 侯玉亮, 等. 相对冲击位置和补片层数对胶接修理CFRP复合材料层合板抗冲击性能的影响[J]. 复合材料学报, 2019, 36(5): 1114-1123. [2] 朱小龙, 李永刚, 王鹤然, 等. 复合材料层合厚板的冲击响应及分层损伤[J]. 科学技术与工程, 2018, 18(15): 317-321. [3] 刘斌, 徐绯, 司源, 等. 飞机用复合材料斜胶接修补结构的冲击损伤[J]. 复合材料学报, 2018, 35(10): 2698-2705. [4] 吴盼, 阎建华, 俞建勇, 等. 碳纤/环氧复合材料层合板低速冲击损伤机理研究[J]. 玻璃钢/复合材料, 2016(3): 31-37. [5] 马少华, 郭洪杰, 回丽, 等. 平面编织复合材料层压板低速冲击损伤和压缩失效行为[J]. 航空材料学报, 2015, 35(4): 39-44. [6] 王一飞, 张晓晶, 汪海. 复合材料层压板低速冲击响应与损伤参数关系研究[J]. 固体力学学报, 2013, 34(1): 63-72. [7] 徐绯, 刘亚各, 闫慧敏. 蜂窝夹芯结构冲击损伤后的压缩行为研究[J]. 应用力学学报, 2013, 30(5): 726-730. [8] 夏龙, 徐绯, 李巧, 等. 复合材料泡沫夹芯结构低速冲击损伤研究[J]. 航空工程进展, 2011, 2(4): 425-431. [9] CRUPI V, KARA E, EPASTO G, et al. Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches[J]. International Journal of Impact Engineering, 2015, 77(mar.): 97-107. [10] Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137M-17[S]. American: American Society for Testing and Materials, 2017. [11] 王莉, 熊舒, 肇研, 等. T800级碳纤维复合材料抗冲击性能[J]. 航空材料学报, 2018, 38(5): 147-151. [12] 欧阳天, 关志东, 谭日明, 等. 复合材料T型加筋板筋条冲击损伤及冲击后压缩行为试验[J]. 复合材料学报, 2018, 35(10): 2689-2697. [13] FENG D, AYMERICH F. Effect of core density on the low-velocity impact response of foam-based sandwich composites[J]. Composite Structures, 2020, 239(6): 112040. [14] 王杰. 复合材料泡沫夹层结构低速冲击与冲击后压缩性能研究[D]. 上海: 上海交通大学, 2013: 178. [15] OLSSON R, BLOCK T B. Criteria for skin rupture and core shear cracking induced by impact on sandwich panels[J]. Composite Structures, 2015, 125(jul.): 81-87. [16] RAMAKRISHNAN K R, GUÉRARD S, VIOT- P, et al. Effect of block copolymer nano-reinforcements on the low velocity impact response of sandwich structures[J]. Composite Structures, 2014, 110: 174-182. [17] ZHANG W, QIN Q, LI J, et al. Deformation and failure of hybrid composite sandwich beams with a metal foam core under quasi-static load and low-velocity impact[J]. Composite Structures, 2020, 242: 112175. [18] ABIR M R, TAY T E, RIDHA M, et al. Modelling damage growth in composites subjected to impact and compression after impact[J]. Composite Structures, 2017, 168: 13-25. [19] HARMAN A B, RIDER A N. Impact damage tolerance of composite repairs to highly-loaded, high temperature composite structures[J]. Composites Part A Applied Science & Manufacturing, 2011, 42(10): 1321-1334. [20] AMITH KUMAR S J, AJITH KUMAR S J. Low-velocity impact damage and energy absorption characteristics of stiffened syntactic foam core sandwich composites[J]. Construction and Building Materials, 2020, 246: 118412. |