[1] IREDALE R J, WARD C, HAMERTON I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides[J]. Progress in Polymer Science, 2017, 69: 1-21.
[2] WAGNER A, GOUZMAN I, ATAR N, et al. Cure kinetics of bismaleimides as basis for polyimide-like inks for PolyJetTM-3D-printing[J]. Journal of Applied Polymer Science, 2019, 136(12): 47244.
[3] ZHAO Z, XIAN G, YU J, et al. Development of electrically conductive structural BMI based CFRPs for lightning strike protection[J]. Composite Science & Technology, 2018, 167: 555-562.
[4] WANG S Q, DONG S L, GAO Y, et al. Thermal ageing effects on mechanical properties and barely visible impact damage behavior of a carbon fiber reinforced bismaleimide composite[J]. Materials & Design, 2017, 115: 213-223.
[5] WANG K, WANG Y, CHEN P, et al. Novel bismaleimide resins modified by allyl compound containing liquid crystalline structure[J]. Advances in Polymer Technology, 2018, 37(1): 281-289.
[6] LIU S, XIONG X, CHEN P, et al. Bismaleimide-diamine copolymers containing phthalide cardo structure and their modified BMI resins[J]. High Performance Polymers, 2018, 30(5): 527-538.
[7] VARANO E, ZHOU M, LANHAM S, et al. Developing toughened bismaleimide-clay nanocomposites: Comparing the use of platelet and rod-like nanoclays[J]. Reactive and Functional Polymers, 2019, 134(1): 10-21.
[8] ZOU Q, XIAO F, GU S Q, et al. Toughening of bismaleimide resin based on the self-assembly of flexible aliphatic side chains[J]. Industrial and Engineering Chemistry Research, 2019, 58(36): 16526-16531.
[9] REN Z, HAO S, XING Y, et al. Asymmetric bismaleimide-based high-performance resins with improved processability and high Tg over 400 ℃[J]. High Performnace Polymers, 2019, 31(9-10): 1132-1139.
[10] KIRMANI M H, GULGUNJE P, RAMACHANDRAN J, et al. Learning from nature: Molecular rearrangement in the bismaleimide system leading to dramatic increase in impact strength[J]. ACS Applied Polymer Materials, 2020, 2(2): 758-767.
[11] LIU C, JIA H, LI N, et al. Enhanced toughness and thermal properties of bismaleimide resin based on the synergistic effect of reactive amino-terminal poly(phthalazinone ether nitrile sulfone) and bisallyl bearing diphenol group[J]. Polymers for Advanced Technologies, 2021, 32(3): 1205-1213.
[12] 邓华, 高军鹏, 包建文. RTM用双马来酰亚胺树脂及其复合材料的制备与性能研究[J]. 复合材料科学与工程, 2017(10): 85.
[13] GAO Y, HUANG F, ZHOU Y, et al. Synthesis and characterization of a novel acetylene-and maleimide-terminated benzoxazine and its high-performance thermosets[J]. Journal of Applied Polymer Science, 2013, 128(1): 340-346.
[14] DIRLIKOV S T. Propargyl-terminated resins-A hydrophobic substitute for epoxy resins[J]. High Performance Polymers, 1990, 2(1): 67-77.
[15] LIU F, LIU J, ZHAO T. Synthesis of a novel series of propargyloxyphenyl maleimides and their characterization as thermal-resistance resins[J]. Journal of Applied Polymer Science, 2010, 115(5): 3103-3109.
[16] PITCHAIMARI G, VIJAYAKUMAR C T. Functionalized monomers based on N-(4-hydroxy phenyl) maleimide: Thermal polymerization and degradation[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1351-1361.
[17] FURUTANI H, IDA J, NAGANO H. Novel propargylether-terminated ester-imide prepolymers: Ⅲ. Thermoset/thermoset blend prepolymers as matrix resins for composites[J]. High Performance Polymers, 2000, 12(4): 489-496.
[18] VINAYAGAMOORTHI S, VIJAYAKUMAR C T, ALAM S, et al. Structural aspects of high temperature thermosets-Bismaleimide/propargyl terminated resin system-polymerization and degradation studies[J]. European Polymer Journal, 2009, 45(4): 1217-1231.
[19] LIU F, LI W, WEI L, et al. Bismaleimide modified bis propargyl ether bisphenol A resin: Synthesis, cure, and thermal properties[J]. Journal of Applied Polymer Science, 2006, 102(4): 3610-3615.
[20] LIU F, LI W, WEI L, et al. Blended resins based on a new propargyl-functional resin: Synthesis, cure, and thermal properties[J]. Journal of Applied Polymer Science, 2006, 102(5): 4207-4212.
[21] RONG Z, HUANG F, SHEN X, et al. Preparation and properties of dipropargyl ether of bisphenol a-modified bismaleimide resins and composites[J]. Polymer Composites, 2008, 29(5): 483-488.
[22] ZHOU J, WANG J, JIN K, et al. s-Triazine-based functional monomers with thermocrosslinkable propargyl units: Synthesis and conversion to the heat-resistant polymers[J]. Polymer, 2016, 102: 301-307.
[23] 董斯堃, 袁荞龙, 黄发荣. 芳基二炔丙基醚改性含硅芳炔树脂的性能[J]. 华东理工大学学报(自然科学版),2019, 45(3): 411-418.
[24] LUO Z H, WEI L H, LIU F, et al. Study on thermal cure and heat-resistant properties of N-(3-acetylenephenyl)maleimide monomer[J]. European Polymer Journal, 2007, 43(8): 3461-3470.
[25] MORGAN R J, SHIN E, ROSENBERG B, et al. Characterization of the cure reactions of bismaleimide composite matrices[J]. Polymer, 1997, 38(3): 639-646.
[26] DOUGLAS W E, OVEREND A S. Curing reactions in acetylene terminated resins-Ⅰ. Uncatalyzed cure of arylpropargyl ether terminated monomers[J]. European Polymer Journal, 1991, 27(11): 1279-1287.
[27] SWANSON S A, FLEMING W, HOFER D C. Acetylene-terminated polyimide cure studies using 13C magic-angle spinning NMR on isotopically labeled samples[J]. Macromolecules, 1992, 25(2): 582-588. |