复合材料科学与工程 ›› 2022, Vol. 0 ›› Issue (11): 96-101.DOI: 10.19936/j.cnki.2096-8000.20221128.014

• 应用研究 • 上一篇    下一篇

基于神经网络技术的风力机叶片覆冰预测方法

马飞宇1, 张春芝1*, 李飞宇2   

  1. 1.北京工业职业技术学院 电气安全技术研究所,北京100000;
    2.内蒙古农业大学 机电工程学院,呼和浩特010018
  • 收稿日期:2021-10-25 出版日期:2022-11-28 发布日期:2022-12-30
  • 通讯作者: 张春芝(1970-),女,博士,教授,主要从事机电一体化方面的研究,584509868@qq.com。
  • 作者简介:马飞宇(1988-),女,硕士,工程师,主要从事电气安全与智能测试技术方面的研究。
  • 基金资助:
    北京市电气安全应用技术创新平台项目

Icing condition prediction of wind turbine blade based on neural network technology

MA Fei-yu1, ZHANG Chun-zhi1*, LI Fei-yu2   

  1. 1. Institute of Electrical Safety Technology, Beijing Polytechnic College, Beijing 100000, China;
    2. The College of Electromechanical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
  • Received:2021-10-25 Online:2022-11-28 Published:2022-12-30

摘要: 安装在寒冷地区的风力机叶片不可避免地会发生覆冰现象,影响风电机组的正常工作。叶片的不同覆冰位置和覆冰质量,使得叶片固有频率发生不同改变。文章对2 MW风力机叶片进行有限元模态分析,构建了覆冰叶片的固有频率变化率和不同位置覆冰质量之间的关系,利用该数据集训练BP人工神经网络并对预测能力进行分析。研究表明,使用考虑叶片不同位置覆冰对全覆冰叶片的固有频率的影响程度构建的关系式训练人工神经网络,预测叶片全部覆冰平均相对误差率为13.21%,比Gantasala等人的预测精度提高1.56%。训练好的人工神经网络模型可实现叶片覆冰位置和质量的检测,可为后续加热除冰、超声波除冰等提供数据支撑,提高除冰效率,降低能源消耗。

关键词: 风力机叶片, 神经网络, 固有频率, 覆冰

Abstract: Wind turbine blades installed in cold areas are inevitably covered with ice, which affects the normal operation of wind turbines. The natural frequencies of blades vary with the locations and mass of icing. In this paper, the finite element modal analysis of 2 MW wind turbine blade is carried out, and the relationships between the change rate of natural frequency of ice-covered blade and the mass of ice-covered blade at different positions are constructed. The BP artificial neural network is trained with this data set and the prediction ability is analyzed. The research shows that the average relative error rate of predicting all ice-covered blades is 13.21%, which is 1.56% higher than the prediction accuracy of Gantasala et al., by using the relational training artificial neural network which is constructed considering the influence degree of different ice-covered locations on the natural frequency of all ice-covered leaves. The trained artificial neural network model can predict the locations and mass of icing. The result can provide data support for subsequent heating or ultrasonic deicing and improve deicing efficiency and reduce energy consumption.

Key words: wind turbine blade, neural network, natural frequency, ice

中图分类号: