[1] 王建录. 风能与风力发电技术[M]. 北京: 化学工业出版社, 2015. [2] 国家能源局. 2020年全国电力工业统计数据 [EB/OL]. 2021-01-20[2021-03-09]. http://www.nea.gov.cn/2021-01/20/html.. [3] HABIBI H, CHENG L, ZHENG H T, et al. A dual deicing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations[J]. Renewable Energy, 2015, 83: 859-870. [4] 刘胜先, 李录平, 余涛, 等. 基于振动检测的风力机叶片覆冰状态诊断技术[J]. 中国电机工程学报, 2013, 33(32): 88-95, 1. [5] 龚妙, 李录平, 刘瑞, 等. 基于运行参数特征的风力机叶片覆冰诊断方法[J]. 动力工程学报, 2019, 39(3): 217-219. [6] GANTASALA S, LUNENO J C, AIDANPAA J O. Identification of ice mass accumulated on wind turbine blades using its natural frequencies[J]. Wind Engineering, 2018, 42(1): 66-84. [7] CATTIN R, HEIKKILA U. Evaluation of ice detection systems for wind turbines[EB/OL]. 2016-01-03[2021-03-09]. https://www.vgb.org/vgbmultimedia/392 Final+report-p-10476.pdf. [8] WEI K, YANG Y, ZUO H, et al. A review on ice detection technology and ice elimination technology for wind turbine[J]. Wind Energy, 2020, 23: 433-457. [9] 沃德·海伦, 斯蒂芬·拉门兹, 波尔·萨斯. 模态分析理论与试验[M]. 白化同, 郭继忠, 译. 北京: 北京理工大学出版社, 2001. [10] 李飞宇, 崔红梅, 苏宏杰, 等. 基于模态频率的风力机叶片覆冰检测方法[J]. 复合材料科学与工程, 2021(2): 19-23, 64. [11] Department of Fluid Mechanics. Tjaereborg wind turbine geometric and operational date[EB/OL]. 1990-11-30[2021-03-09]. http://130.226.56.150/extra/web_docs/tjare/VK-184-901130.pdf. [12] Guideline for the certification of wind turbines: GL—2010[S]. German: Germanischer Lioyd, 2010. [13] 陈彩凤, 杨杰, 成斌, 等. 覆冰条件下旋转风力机叶片应力与模态分析[J]. 玻璃钢/复合材料, 2018(7): 26-30. [14] GANTASALA S, LUNENO J C, AIDANPAA J O. Influence of icing on the modal behavior of wind turbine blades[J]. Energies, 2016, 9(11): 862-868. [15] LEE J C, SHIN S C, KIN S Y. An optimal design of wind turbine and ship structure based on neuro-response surface method[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7: 750-769. [16] CHANG G W, HU H J, CHANG Y R, et al. An improved neural network-based approach for short-term wind speed and power forecast[J]. Renewable Energy, 2017, 105: 301-311. [17] JIMENEZ A A, MARQUEZ F G, MORALEDA V B, et al. Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis[J]. Renewable Energy, 2019, 132: 1034-1048. [18] DONG X, GAO D, LI J, et al. Blades icing identification model of wind turbines based on SCADA data[J]. Renewable Energy, 2020, 162: 575-586. |