[1] SCHAPERY R A. Stress analysis of viscoelastic composite materials[J]. Journal of Composite Materials, 1967, 1(3): 228-267. [2] WEITSMAN Y. Residual thermal stresses due to cool-down of epoxy-resin composites[J]. Journal of Applied Mechanics, 1979, 46(3): 563-567. [3] BOGETTI T A, GILLESPIE J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials, 1992, 26(5): 626-660. [4] JOHNSTON A A. An integrated model of the development of process-induced deformation in autoclave processing of composite structures[D]. Ann Arbor: The University of British Columbia (Canada), 1998. [5] JOHNSTON A A, VAZIRI R, POURSARTIP A. A plane strain model for process-induced deformation of laminated composite structures[J]. Jouranl of Composite Materials, 2001, 35(16): 1435-1469. [6] DING A X, LI S X, WANG J H, et al. A new path-dependent constitutive model predicting cure-induced distortions in composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 183-196. [7] LANGE J, TOLL S, MANSON J E, et al. Residual stress build-up in thermoset films cured above their ultimate glass transition temperature[J]. Polymer, 1995, 36(16): 3135-3141. [8] WISNOM M R, GIGLIOTTI M, ERSOY N, et al. Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(4): 522-529. [9] HAHN H T, PAGANO N J. Curing stresses in composite laminates[J]. Journal of Composite Materials, 1975, 9(1): 91-106. [10] LIU K, YE J R, TANG Z W, et al. Simulation and verification of machining deformation for composite materials[J]. The Journal of Wuhan University of Technology-Materials Science Edition, 2014, 29(5): 917-922. [11] LIU K, ZHANG B M, XU X, et al. Simulation and analysis of process-induced distortions in hemispherical thermostamping for unidirectional thermoplastic composites[J]. Polymer Composites, 2018, 40(5): 1786-1800. [12] 刘凯. 连续纤维增强复合材料热压工艺弹塑性变形机理与数值模拟[D]. 北京: 北京航空航天大学, 2018. [13] 唐占文, 张博明. 复合材料设计制造一体化中的固化变形预报技术[J]. 航空制造技术, 2014, 15: 32-37. [14] QI Z C, ZHANG N X, LIU Y, et al. Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning[J]. Composite Structures, 2019, 212: 199-206. [15] YANG Z, GU X S, LIANG X Y, et al. Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity[J]. Materials & Design, 2010, 31(3): 1042-1049. [16] FARHANA N I E, ABDUL MAJID M S, PAULRAJ M P, et al. A novel vibration based non-destructive testing for predicting glass fibre/matrix volume fraction in composites using a neural network model[J]. Composite Structures, 2016, 144: 96-107. [17] BAYRAKTAR Ö, UZUN G, ÇAKIROĞLU R, et al. Experimental study on the 3d-printed plastic parts and predicting the mechanical properties using artificial neural networks[J]. Polymers for Advanced Technologies, 2016, 28(8): 1044-1051. [18] SINGH A K, SIDDHARTHA, YADAV S. Investigation of sub-micron size cenosphere fillers and filler loading on the mechanical and tribological peculiarity of polyester composites[J]. Polymers for Advanced Technologies, 2017, 28(12): 1764-1777. [19] YE L, SU Z Q, YANG C H, et al. Hierarchical development of training database for artificial neural network-based damage identification[J]. Composite Structures, 2006, 76(3): 224-233. [20] NAIR A, CAI C S, KONG X. Acoustic emission pattern recognition in CFRP retrofitted RC beams for failure mode identification[J]. Composites Part B: Engineering, 2019, 161: 691-701. [21] AL-ASSAF Y, KADI H E. Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks[J]. Composite Structures, 2007, 77(4): 561-569. [22] CARLONE P, ALEKSENDRIĆ D, ĆIROVIĆ V, et al. Meta-modeling of the curing process of thermoset matrix composites by means of a FEM-ANN approach[J]. Composites Part B: Engineering, 2014, 67: 441-448. [23] LIN Y C, LIANG Y J, CHEN M S, et al. A comparative study on phenomenon and deep belief network models for hot deformation behavior of an Al-Zn-Mg-Cu alloy[J]. Applied Physics a-Materials Science & Processing, 2017, 123(1): 68. [24] LIN Y C, LI J, CHEN M S, et al. A deep belief network to predict the hot deformation behavior of a Ni-based superalloy[J]. Neural Computing & Applications, 2018, 29(11): 1015-1023. [25] RAI N, PITCHUMANI R. Rapid cure simulation using artificial neural networks[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28A: 847-859. [26] LUO L, ZHANG B M, ZHANG G W, et al. Rapid prediction of cured shape types of composite laminates using a FEM-ANN method[J]. Composite Structures, 2020, 238: 111980. [27] LUO L, ZHANG B M, ZHANG G W, et al. Rapid prediction and inverse design of composite materials for desired distortion behaviours using artificial neural networks[J]. Polymer for Advanced Technologies, 2021, 32: 1049-1060. [28] WANG Z L, ADACHI Y. Property prediction and properties-to-microstructure inverse analysis of steels by a machine-learning approach[J]. Materials Science and Engineering: A, 2019, 744: 661-670. [29] ZHANG Z S, HONG Y, HOU B, et al. Accelerated discoveries of mechanical properties of graphene using machine learning and high-throughput computation[J]. Carbon, 2019, 148: 115-123. [30] CHEN D D, LIN Y C, WU F. A design framework for optimizing forming processing parameters based on matrix cellular automaton and neural network-based model predictive control methods[J]. Applied Mathematical Modelling, 2019, 76: 918-937. [31] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by back-propagating errors[J]. Nature, 1986, 323(9): 533-536. [32] 王晓霞. 热固性树脂基复合材料的固化变形数值模拟[D]. 济南: 山东大学, 2012. [33] KIM Y K, WHITE S R. Viscoelastic analysis of processing-induced residual stresses in thick composite laminates[J]. Mechanics of Composite Materials and Structures, 1997, 4(4): 361-387. [34] KIM Y K, WHITE S R. Stress relaxation behavior of 3501-6 epoxy resin during cure[J]. Polymer Engineering & Science, 1996, 36(23): 2852-2862. [35] ZOCHER M A, GROVES S E, ALLEN D H. A three-dimensional finite element formulation for thermoviscoelastic orthotropic media[J]. International Journal for Numerical Methods in Engineering, 1997, 40(12): 2267-2288. [36] SVANBERG J M, HOLMBERG J A. Prediction of shape distortions Part Ⅰ. FE-implementation of a path dependent constitutive model[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(6): 711-721. |