[1] 范真祥, 程海峰, 张长瑞,等. 热防护材料的研究进展[J]. 材料导报, 2005, 19(1): 13-16.
[2] LAUB B, VENKATAPATHY E. Planetary probe atmospheric entry and descent trajectory analysis and science[J]. International Journal of Thermal Sciences, 2004, 7: 6-9.
[3] 吴晓宏, 陆小龙, 李涛, 等. 轻质烧蚀材料研究综述[J]. 航天器环境工程, 2011, 28(4): 313-317.
[4] WILLCOCKSON W. Stardust sample return capsule design experience[J]. Journal of Spacecraft and Rockets, 1999, 36(3): 470-474.
[5] MILOS F, CHEN Y. Ablation and thermal response property model validation for phenolic impregnated carbon ablator[J]. Journal of Spacecraft and Rockets, 2010, 47(5): 786-805.
[6] CHAVEZ J, PHAM J. AGRAWAL P. Fracture in phenolic impregnated carbon ablator[J]. Journal of Spacecraft and Rockets, 2013, 50(4): 735-741.
[7] BRODY K, BESSIRE T K. Decomposition of phenolic impregnated carbon ablator (PICA) as a function of temperature and heating rate[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21422-21437.
[8] BESSIRE B, LAHANKAR S, MINTON T. Pyrolysis of phenolic impregnated carbon ablator (PICA)[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1383-1395.
[9] STACKPOOLE M, THORNTON J, FAN W. Ongoing TPS development at NASA ames research center[C]//Eighth International Conference on Parallel and Distributed Systems. IEEE Computer Society, 2010.
[10] WONG H W, PECKY J, ASSIF J,et al. Quantitative determination of species production fromthe pyrolysis of the phenolic impregnated carbon ablator (PICA)[C]//53rd AIAA Aerospace Sciences Meeting. Florida: 2015.
[11] TRAN H, JOHNSON C, RASKY D. Phenolic impregnated carbon ablators (PICA) for discovery class missions[C]//31st Thermophysics Conference AIAA. 1996.
[12] 孙阳. 多孔纤维基酚醛树脂烧蚀复合材料的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[13] 贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1): 77-80.
[14] HONG C, HAN J, ZHANG X, et al. Novel phenolic impregnated 3-D fine-woven pierced carbon fabric composites: Microstructure and ablation behavior[J]. Composites Part B Engineering, 2012, 42(5): 2389-2394.
[15] LACHAUD J, MANSOUR N. Microscopic scale simulation of the ablation of fibrous materials[C]//Aiaa Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2013.
[16] 胡继东, 左小彪, 冯志海. 航天器热防护材料的发展概述[J]. 航天返回与遥感, 2011, 32(3): 88-92.
[17] 解维华, 韩国凯, 孟松鹤. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8): 6-22.
[18] TRICK K, SALIBA T. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon, 1995, 33(11): 1509-1514.
[19] JACKSON W, CONLEY R. High temperature oxidative degradation of phenol-formaldehyde polycondensates[J]. Journal of Applied Polymer Science, 1964, 8(5): 2163-2193.
[20] WANG J, JIANG H, JIANG N. Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin[J]. Thermochimica Acta, 2009, 496(1): 136-142.
[21] 柳云钊, 师建军, 王筠, 等. PICA中的酚醛树脂热分解机理[J]. 宇航材料工艺, 2016, 78(6): 72-77.
[22] 易法军, 梁军. 防热复合材料的烧蚀机理与模型研究[J]. 固体火箭技术, 2000, 23(4): 48-56.
[23] LI W, HUANG H, ZHANG Z, et al. Effects of gradient density on thermal protection performance of AVCOAT composites under varied heat flux[J]. Polymer Composites, 2016, 37(4): 1034-1041.
[24] BESSIRE K, BRODY, SRIDHAR, et al. Pyrolysis of phenolic impregnated carbon ablator (PICA)[J]. ACS Applied Materials & Interfaces, 2014, 7(3): 1383-1395.
[25] 嵇阿琳, 李贺军, 崔红. 针刺炭纤维预制体的发展与应用[J]. 炭素技术, 2010(3): 23-27.
[26] 杨威, 贾献峰, 乔文明, 等. 刚性短切碳纤维预制体和酚醛浸渍碳烧蚀体的制备及性能[J]. 宇航材料工艺, 2016, 46(2): 13-18.
[27] DAVIES I, RAWLINGS R. Microstructural investigation of low-density carbon-carbon composites[J]. Journal of Materials Science, 1994, 29(2): 338-344.
[28] WEI G, ROBBINS J. Development and characterization of carbon-bonded carbon fiber insulation for radioisotope space power systems[J]. American Ceramic Society Bulletin, 1985, 64(5): 1-42.
[29] CHAZOTO, HUBIN A. Microstructure and gas-surface interaction studies of a low-density carbon-bonded carbon fiber composite in atmospheric entry plasmas[J]. Composites Part A Applied Science and Manufacturing, 2015, 72: 96-107.
[30] TRAN H, RASKY D, ESFAHANI L. Thermal response and ablation characteristics of light weight ceramic ablators[J]. Journal of Spacecraft and Rockets, 1994, 31(6): 993-998.
[31] MARBAN G, FUERTES A, NEVSKAIA D. Dry formation of low-density Nomex rejects-based activated carbon fiber composites[J]. Carbon, 2000, 38(15): 2167-2170.
[32] LIU C, HAN J, ZHANG X, et al. Lightweight carbon-bonded carbon fiber composites prepared by pressure filtration technique[J]. Carbon, 2013, 59: 551-554.
[33] BORNER A, PANERAI F, MANSOUR N. DSMC study of carbon fiber oxidation in ablative thermal protection systems[C]//45th AIAA Thermophysics Conference. 2015: 22-26.
[34] CHEN T, LIAO J, LIU G, et al. Effects of needle-punched felt structure on the mechanical properties of carbon/carbon composites[J]. Carbon, 2003, 41(5): 993-999. |