[1] HUANG T, WANG Y, WANG G. Review of the mechanical properties of a 3D woven composite and its applications[J]. Polymer-Plastics Technology and Engineering, 2018, 57(8): 740-756. [2] ANSAR M, WANG X W, ZHOU C W. Modeling strategies of 3D woven composites: A review[J]. Composite Structures, 2011, 93(8): 1947-1963. [3] GEREKE T, CHERIF C. A review of numerical models for 3D woven composite reinforcements[J]. Composite Structures, 2019, 209: 60-66. [4] WENDLING A, HIVET G, VIDAL-SALLWE E, et al. Consistent geometrical modelling of interlock fabrics[J]. Finite Elements in Analysis and Design, 2014, 90: 93-105. [5] YOUSAF Z, POTLURI P, WITHERS P J, et al. Digital element simulation of aligned tows during compaction validated by computed tomography (CT)[J]. International Journal of Solids and Structures, 2018, 154: 78-87. [6] YU B, BLANC R, SOUTIS C, et al. Evolution of damage during the fatigue of 3D woven glass-fibre reinforced composites subjected to tension-tension loading observed by time-lapse X-ray tomography[J]. Composites Part A: Applied Science and Manufacturing, 2016, 82: 279-290. [7] MAZARS V, CATY O, COUEGNAT G, et al. Damage investigation and modeling of 3D woven ceramic matrix composites from X-ray tomography in-situ tensile tests[J]. Acta Materialia, 2017, 140: 130-139. [8] LIU Y, STRAUMIT I, VASIUKOV D, et al. Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography[J]. Composite Structures, 2017, 179: 568-579. [9] NAOUAR N, VIDAL-SALLE E, Schneider J, et al. 3D composite reinforcement meso FE analyses based on X-ray computed tomography[J]. Composite Structures, 2015, 132: 1094-1104. [10] TAUBIN G, ZHANG T, GOLUB G. Optimal surface smoothing as filter design[C]//European Conference on Computer Vision. Berlin, Heidelberg: Springer, 1996: 283-292. [11] BOYD S K, MULLER R. Smooth surface meshing for automated finite element model generation from 3D image data[J]. Journal of Biomechanics, 2006, 39(7): 1287-1295. [12] LONG A C, BROWN L P. Modelling the geometry of textile reinforcements for composites: TexGen[M]. Composite Reinforcements for Optimum Performance, Woodhead Publishing, 2011: 239-264. [13] LIN H, ZENG X, SHERBURN M, et al. Automated geometric modelling of textile structures[J]. Textile Research Journal, 2012, 82(16): 1689-1702. [14] GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures, 2014, 118: 284-293. [15] DRACH A, DRACH B, TSUKROV I. Processing of fiber architecture data for finite element modeling of 3D woven composites[J]. Advances in Engineering Software, 2014, 72: 18-27. [16] GRAIL G, HIRSEKORN M, WENDLING A, et al. Consistent finite element mesh generation for meso-scale modeling of textile composites with preformed and compacted reinforcements[J]. Composites Part A: Applied Science and Manufacturing, 2013, 55: 143-151. [17] WANG Y, SUN X. Digital-element simulation of textile processes[J]. Composites Science and Technology, 2001, 61(2): 311-319. [18] ZHOU G, SUN X, WANG Y. Multi-chain digital element analysis in textile mechanics[J]. Composites Science and Technology, 2004, 64(2): 239-244. [19] MAZUMDER A, WANG Y, YEN C F. A structured method to generate conformal FE mesh for realistic textile composite micro-geometry[J]. Composite Structures, 2020, 239: 112032. [20] DURVILLE D. Microscopic approaches for understanding the mechanical behaviour of reinforcement in composites[M]. Composite Reinforcements for Optimum Performance, Woodhead Publishing, 2011: 461-485. [21] DURVILLE D, BAYDOUN I, MOUSTACAS H, et al. Determining the initial configuration and characterizing the mechanical properties of 3D angle-interlock fabrics using finite element simulation[J]. International Journal of Solids and Structures, 2018, 154: 97-103. [22] GREEN S D, LONG A C, EL SAID B S F, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures, 2014, 108: 747-756. [23] MAHADIK Y, HALLETT S R. Finite element modelling of tow geometry in 3D woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1192-1200. [24] DRACH B, TSUKROV I, TROFIMOV A, et al. Comparison of stress-based failure criteria for prediction of curing induced damage in 3D woven composites[J]. Composite Structures, 2018, 189: 366-377. [25] MIAO Y, ZHOU E, WANG Y, et al. Mechanics of textile composites: Micro-geometry[J]. Composites Science and Technology, 2008, 68(7-8): 1671-1678. [26] PAN Q. Multi-scale modelling and material characterisation of textile composites for aerospace applications[D]. UK: University of Nottingham, 2016. [27] LI S. General unit cells for micromechanical analyses of unidirectional composites[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(6): 815-826. |