[1] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 83-100. [2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 12-12. [3] 益小苏, 张明, 安学锋, 等. 先进航空树脂基复合材料研究与应用进展[J]. 工程塑料应用, 2009, 37(10): 72-76. [4] CHOI J W. Architecture of a knowledge based engineering system for weight and cost estimation for a composite airplane structures[J]. Expert Systems with Applications, 2009, 36(8): 10828-10836. [5] KOLESNIKOV B, HERBECK L. Carbon fiber composite airplane fuselage: Concept and analysis[C]//German Aerospace Center DLR. International Conference ILA 2004. Berlin: Germany DLR, 2004: 1-11. [6] WONG R. Design, manufacturing & application of composites[M]. New York: CRC Press, 2020. [7] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6): 1629-1650. [8] 战奕凯, 赵潜, 李莉萍, 等. 碳纤维表面改性研究进展[J]. 工程塑料应用, 2019, 47(10): 135-139. [9] EHRBURGER P. Surface properties of carbon fibres[M]. Berlin: Springer Netherlands, 1990. [10] LI H, LIEBSCHER M, RANJBARIAN M, et al. Electrochemical modification of carbon fiber yarns in cementitious pore solution for an enhanced interaction towards concrete matrices[J]. Applied Surface Science, 2019, 487(SEP.1): 52-58. [11] SUN Y, YANG C, LU Y. Weak layer exfoliation and an attempt for modification in anodic oxidation of PAN-based carbon fiber[J]. Journal of Materials Science, 2020, 55(6): 1-8. [12] ALZAIN S. Effect of chemical, microwave irradiation, steam autoclave, ultraviolet light radiation, ozone and electrolyzed oxidizing water disinfection on properties of impression materials: A systematic review and meta-analysis study[J]. The Saudi Dental Journal, 2020, 32( 4): 161-170. [13] WANG Y, ZHANG S, LUO D, et al. Effect of chemically modified recycled carbon fiber composite on the mechanical properties of cementitious mortar[J]. Composites Part B: Engineering, 2019, 173(15): 106853. [14] ZHAO L, LIU W, LIU P, et al. Study on atmospheric air glow discharge plasma generation and surface modification of carbon fiber fabric[J]. Plasma Processes and Polymers, 2020, 17(4): 1-11. [15] ZAI X, LIU A, TIAN Y, et al. Oxidation modification of polyacrylonitrile-based carbon fiber and its electro-chemical performance as marine electrode for electric field test[J]. Journal of Ocean University of China, 2020, 19(2): 361-368. [16] YZ A, KH B, SK C, et al. Enhanced adhesion effect of epoxy resin on carbon fiber-reinforced Poly(etheretherketone) via surface initiated photopolymerization of glycidyl methacrylate[J]. Polymer, 2020, 209: 123036. [17] SARAC A S, TOFAIL S, SERANTONI M, et al. Surface characterisation of electrografted random poly[carbazole-co-3-methylthiophene] copolymers on carbon fiber: XPS, AFM and Raman spectroscopy[J]. Applied Surface Science, 2004, 222(1-4): 148-165. [18] 刘玉文, 张志谦, 黄玉东, 等. 电子束固化树脂基复合材料中碳纤维表面改性研究[J]. 高技术通讯, 2002, 12(3): 38-42, 66. [19] 刘玉文, 张志谦, 黄玉东, 等. 电子束固化复合材料及界面[J]. 材料科学与工艺, 2000, 8(3): 97-102. [20] 刘玉文, 张志谦, 黄玉东, 等. 硅烷偶联剂对电子束固化碳纤维复合材料界面的增效研究[J]. 材料科学与工艺, 2001(4): 379-382. [21] LEE W H, LEE J G, REUCROFT P J. XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2/(O2+N2)[J]. Applied Surface Science, 2001, 171(1-2): 136-142. [22] 田军, 王齐祖, 杨生荣, 等. 60Coγ射线辐照对碳纤维表面及其复合材料层间剪切强度的影响[J]. 复合材料学报, 1998, 15(4): 1-5. [23] ZHAO X, DUAN Y, LI D, et al. Carbon fiber/epoxy interfacial bonding improvement by microwave pretreatment for low-energy electron beam curing[J]. Polymers & Polymer Composites, 2016, 24(2): 121-125. [24] ZHANG J, DUAN Y, WANG B, et al. Interfacial enhancement for carbon fibre reinforced electron beam cured polymer composite by microwave irradiation[J]. Polymer, 2020,192(6): 122327. [25] 周希朗. 电磁场理论与微波技术基础[M]. 南京: 东南大学出版社, 2004. [26] 冯奎胜, 李娜, 李劲. Ansoft HFSS入门教程与仿真实例[M]. 北京: 电子工业出版社, 2013. [27] WANG B, DUAN Y, ZHANG J, et al. Microwave radiation effects on carbon fibres interfacial performance[J]. Composites Part B: Engineering, 2016, 99: 398-406. |