[1] ROMUALDI J P. Research needs and the future of ferrocement[J]. Special Publication, 1979, 61: 173-178.
[2] MANGAT P S, SWAMY R N. Compactibility of steel fibre reinforced concrete[J]. Concrete, 1974, 8(5): 34-35.
[3] SWAMY R N, MANGAT P S. A theory for the flexural strength of steel fiber reinforced concrete[J]. Cement and Concrete Research, 1974, 4(2): 313-325.
[4] ALLEN H G. The strength of thin composites of finite width, with brittle matrices and random discontinuous reinforcing fibres[J]. Journal of Physics D: Applied Physics, 1972, 5(2): 331-343.
[5] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511.
[6] 姚琏, 叶连生, 钱辉惋. 乱向短纤维增强混凝土的裂后纤维有效系数[J]. 东南大学学报(自然科学版), 1983, 13(1): 87-95.
[7] DUPONT D, VANDEWALLE L. Distribution of steel fibres in rectangular sections[J]. Cement and Concrete Composites, 2005, 27(3): 391-398.
[8] 李长风, 刘加平, 刘建忠, 等. 纤维增强混凝土中纤维分布表征及调控的研究进展[J]. 混凝土, 2014(7): 108-113.
[9] LARANJEIRA F, GRÜNEWALD S, WALRAVEN J, et al. Characterization of the orientation profile of steel fiber reinforced concrete[J]. Materials and Structures, 2011, 44(6): 1093-1111.
[10] KANG S T, KIM J K. Numerical simulation of the variation of fiber orientation distribution during flow molding of ultra high performance cementitious composites (UHPCC)[J]. Cement and Concrete Composites, 2012, 34(2): 208-217.
[11] LEE C, KIM H. Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete[J]. Cement and Concrete Research, 2010, 40(5): 810-819.
[12] WILLE K, KIM D J, NAAMAN A E. Strain-hardening UHP-FRC with low fiber contents[J]. Materials and structures, 2011, 44(3): 583-598.
[13] SWAMY R N. Fibre reinforcement of cement and concrete[J]. Matériaux et Construction, 1975, 8(3): 235-254.
[14] EDGINGTON J, HANNANT D J. Steel fibre reinforced concrete. The effect on fibre orientation of compaction by vibration[J]. Matériaux et Construction, 1972, 5(1): 41-44.
[15] 沈荣熹. 捣实方法对钢纤维混凝土的纤维取向、抗弯强度与韧性的影响[J]. 硅酸盐学报, 1984(1): 21-31, 133-134.
[16] POITOU A, CHINESTA F, BERNIER G. Orienting fibers by extrusion in reinforced reactive powder concrete[J]. Journal of Engineering Mechanics, 2001, 127(6): 593-598.
[17] QIAN X, ZHOU X, MU B, et al. Fiber alignment and property direction dependency of FRC extrudate[J]. Cement and Concrete Research, 2003, 33(10): 1575-1581.
[18] YOO D Y, KANG S T, YOON Y S. Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC[J]. Construction and Building Materials, 2014, 64: 67-81.
[19] YOO D Y, KANG S T, YOON Y S. Enhancing the flexural performance of ultra-high-performance concrete using long steel fibers[J]. Composite Structures, 2016, 147: 220-230.
[20] 王强. 钢纤维取向角对超高性能混凝土抗拉强度的影响[J]. 混凝土与水泥制品, 2019(1): 51-54.
[21] KANG S T, KIM J K. The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)[J]. Cement and Concrete Research, 2011, 41(10): 1001-1014.
[22] KANG S T, KIM J K. Investigation on the flexural behavior of UHPCC considering the effect of fiber orientation distribution[J]. Construction and Building Materials, 2012, 28(1): 57-65.
[23] 林泽文, 陈浩, 水中和, 等. 浇注方式对超高性能纤维增强混凝土中纤维取向及分布的影响[J]. 硅酸盐通报, 2019, 38(7): 2010-2015.
[24] HUANG H H, GAO X, KHAYAT K H. Contribution of fiber alignment on flexural properties of UHPC and prediction using the Composite Theory[J]. Cement and Concrete Composites, 2021, 118:
103971.
[25] 苏安双, 黄煌煌, 高小建. 基于流动诱导纤维取向的UHPC制备与性能研究[J]. 中国建材科技, 2020, 29(5): 77-81.
[26] MOON J S, KANG S T. Prediction of tensile behavior of UHSFRC considering the flow field in the placing dominated by shear flow[J]. Materials, 2018, 11(2): 194.
[27] PLAGUÉ T, DESMETTRE C, CHARRON J P. Influence of fiber type and fiber orientation on cracking and permeability of reinforced concrete under tensile loading[J]. Cement and Concrete Research, 2017, 94: 59-70.
[28] ROY M, HOLLMANN C, WILLE K. Influence of volume fraction and orientation of fibers on the pullout behavior of reinforcement bar embedded in ultra high performance concrete[J]. Construction and Building Materials, 2017, 146: 582-593.
[29] 张阳, 屈少钦, 卢九章, 等. UHPC纤维定向法及对受拉性能影响[J]. 重庆交通大学学报(自然科学版), 2021, 40(5): 74-80.
[30] 毕继红, 徐达, 鲍春, 等. 钢纤维混凝土浇筑模拟及纤维分布取向探究[J]. 特种结构, 2015, 32(6): 113-118, 66.
[31] 沈秀将, 邵旭东, BRÜHWILER E. 基于纤维取向分布的应变硬化超高性能混凝土薄层抗拉性能[J]. 硅酸盐学报, 2021, 49(11): 2384-2392.
[32] 慕儒, 邱欣, 赵全明, 等. 单向分布钢纤维增强水泥基复合材料(Ⅰ):钢纤维方向控制[J]. 建筑材料学报, 2015, 18(2): 208-213.
[33] 慕儒, 李辉, 王晓伟, 等. 单向分布钢纤维增强水泥基复合材料(Ⅱ): 制备及钢纤维增强作用[J]. 建筑材料学报, 2015, 18(3): 387-392.
[34] 慕儒, 王成, 李辉, 等. 单向分布钢纤维增强水泥基复合材料(Ⅲ): 断裂性能[J]. 建筑材料学报, 2016, 19(1): 78-82.
[35] MU R, LI H, QING L, et al. Aligning steel fibers in cement mortar using electro-magnetic field[J]. Construction and Building Materials, 2017, 131: 309-316.
[36] 薛岩, 慕儒, 卿龙邦, 等. 环向定向端钩型钢纤维增强水泥基管道的力学性能研究[J]. 混凝土, 2019(5): 119-121, 125.
[37] 张伟杰, 谢子令, 周华飞. 部分定向钢纤维增强地质聚合物复合梁的抗弯性能[J/OL]. 建筑材料学报, 1-15[2021-11-29].http://kns.cnki.net/kcms/detail/31.1764.TU.20200927.0929.010.html.
[38] 汪洋, 徐金霞, 蒋林华, 等. 磁场诱导定向碳纤维增强水泥砂浆的力学性能[J]. 复合材料学报, 2019, 36(11): 2726-2733.
[39] 张小琴, 陈驹. 磁导向仿钢纤维混凝土抗弯性能研究[J]. 低温建筑技术, 2021, 43(7): 36-40.
[40] NUNES S, PIMENTEL M, RIBEIRO F, et al. Estimation of the tensile strength of UHPFRC layers based on non-destructive assessment of the fibre content and orientation[J]. Cement and Concrete Composites, 2017, 83: 222-238.
[41] WIJFFELS M J H, WOLFS R J M, SUIker A S J, et al. Magnetic orientation of steel fibres in self-compacting concrete beams: Effect on failure behaviour[J]. Cement and Concrete Composites, 2017, 80: 342-355.
[42] 苟鸿翔, 朱洪波, 周海云, 等. 定向分布钢纤维对超高性能混凝土的增强作用[J]. 硅酸盐学报, 2020, 48(11): 1756-1764.
[43] 郝光普, 朱洪波, 周美茹. 定向排布钢纤维UHPC的弯折、拉伸强度及其微观结构[J]. 武汉理工大学学报, 2021, 43(5): 75-79.
[44] 王辉明, 朱文, 贺正波. 纤维定向布放钢纤维混凝土力学性能及断裂过程细观分析[J]. 水力发电, 2021, 47(6): 50-54, 59.
[45] ENFEDAQUE A, ALBERTI M G, GÁLVEZ J C. Influence of fiber distribution and orientation in the fracture behavior of polyolefin fiber-reinforced concrete[J]. Materials, 2019, 12(2): 220.
[46] LI F Y, CAO C Y, CUI Y X, et al. Experimental study of the basic mechanical properties of directionally distributed steel fibre-reinforced concrete[J]. Advances in Materials Science and Engineering, 2018, id=3578182.https://doi.org/10.1155/2018/3578182.
[47] LI F Y, LI L Y, DANG Y, et al. Study of the effect of fibre orientation on artificially directed steel fibre-reinforced concrete[J]. Advances in Materials Science and Engineering, 2018, id=8657083.https://doi.org/10.1155/2018/8657083.
[48] LI F Y, CUI Y X, CAO C Y, et al. Experimental study of the tensile and flexural mechanical properties of directionally distributed steel fibre-reinforced concrete[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(9): 1721-1732. |