[1] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006(3): 24-36. [2] 刘伟庆, 方海, 方园. 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40(4): 1-16. [3] HOLLAWAY L C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties[J]. Construction and Building Materials, 2010, 24(12): 2419-2445. [4] CROMWELL J R, HARRIES K A, SHAHROOZ B M. Environmental durability of externally bonded FRP materials intended for repair of concrete structures[J]. Construction and Building Materials, 2011, 25(5): 2528-2539. [5] VEDERNIKOV A, SAFONOV A, TUCCI F, et al. Pultruded materials and structures: A review[J]. Journal of Composite Materials, 2020, 54(26): 1-37. [6] LIU T Q, LIU X, FENG P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects[J]. Composites Part B: Engineering, 2020, 191,107958. [7] 陈博. 国内外复合材料工艺设备发展述评之五: 拉挤成型[J/OL]. 复合材料科学与工程: 1-19[2022-09-28]. https://doi.org/10.19936/j.cnki.2096-8000.20211028.032. [8] LIU T Q, FENG P, WU Y, et al. Developing an innovative curved-pultruded large-scale GFRP arch beam[J]. Composite Structures, 2021, 256: 113111. [9] 冯鹏. 复合材料在土木工程中的发展与应用[J]. 玻璃钢/复合材料, 2014(9): 99-104. [10] 张为军, 田野, 覃兆平, 等. 桥梁用大截面FRP拉挤型材的结构设计与试验研究[J]. 玻璃钢/复合材料, 2013(Z3): 55-60. [11] 田野, 冯鹏,覃兆平, 等. FRP拉挤型材桁架桥结构体系的研究与应用[J]. 玻璃钢/复合材料, 2012(S1): 139-142. [12] 结构用纤维增强复合材料拉挤型材: GB/T 31539—2015[S]. 北京: 中国标准出版社, 2015. [13] 清华大学, 中冶建筑研究总院有限公司. 复合材料拉挤型材结构技术规程: CECS692—2020[S]. 北京: 中国建筑工业出版社, 2020. [14] 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012. [15] ZHANG J, ZHOU P, GUAN C, et al. An ultra-lightweight CFRP beam-string structure[J]. Composite Structures, 2021, 257: 113149. [16] 邹星星, 陈军, 姜慧, 等. 高抗剪强度FRP型材组合梁成型工艺及试验研究[J]. 土木工程学报, 2016, 49(4): 40-47. [17] LIU T Q, YANG J Q, FENG P, et al. Determining rotational stiffness of flange-web junction of pultruded GFRP Ⅰ-sections[J]. Composite Structures, 2020, 236: 111843. [18] KOLLÁR L P. Local buckling of fiber reinforced plastic composite structural members with open and closed cross sections[J]. ASCE Journal of Structural Engineering, 2003, 129(11): 1503-1513. [19] LIU T Q, VIEIRA J D, HARRIES K A. Predicting flange local buckling capacity of pultruded GFRP Ⅰ-sections subject to flexure[J]. Journal of Composites for Construction, 2020, 24(4): 04020025. [20] ASCIONE F, LAMBERTI M, RAZAQPUR G. Modifications of standard GFRP sections shape and proportions for improved stiffness and lateral-torsional stability[J]. Composite Structures, 2015, 132: 265-289. [21] LIU T Q, VIEIRA J D, HARRIES K A. Lateral torsional buckling and section distortion of pultruded GFRP Ⅰ-sections subject to flexure[J]. Composite Structures, 2019, 225: 111151. [22] INSAUSTI A, PUENTE I, AZKUNE M. Interaction between local and lateral buckling on pultruded Ⅰ-beams[J]. ASCE Journal of Composites for Construction, 2009, 13(4): 315-324. [23] SCHAFER B W. Local, distortional, and euler buckling in thin-walled columns[J]. ASCE Journal of Structural Engineering, 2002, 128(3): 289-299. [24] LIU T Q. Stability behavior of pultruded glass-fiber reinforced polymer Ⅰ-sections subject to flexure[D]. Pittsburgh: University of Pittsburgh, 2017. |