[1] KIM E S, LEE Y Z. Investigation of the effects of uneven plateau grinding on friction, wear rate, and localized surface damage on internal combustion engine cylinder liners[J]. International Journal of Automotive Technology, 2021, 22(3): 561-567. [2] KENNETH H, PETER A, ALI E. Global energy consumption due to friction in passenger cars[J]. Tribology International, 2012, 47: 221-234. [3] WEN X, JOSHI R. 2D materials-based metal matrix composites[J]. Journal of Physics D: Applied Physics, 2020, 53(42): 3001-3021. [4] SHI D, YANG M, CHANG B, et al. Ultrasonic-ball milling: A novel strategy to prepare large-size ultrathin 2D materials[J]. Small, 2020, 16(13): 1906734(1-7). [5] AN L, YU Y, BAI C, et al. Simultaneous production and functionalization of hexagonal boron nitride nanosheets by solvent-free mechanical exfoliation for superlubricant water-based lubricant additives[J]. NPJ 2D Materials and Applications, 2019, 3(1): 28-36. [6] MBAMARA U S, OLOFINJANA B, AJAYI O O, et al. Friction and wear behavior of nitrogen-doped ZnO thin films deposited via MOCVD under dry contact[J]. Engineering Science and Technology, 2016, 19(2): 956-963. [7] MANU B R, GUPTA A, JAYATISSA A H. Tribological properties of 2D materials and composites-a review of recent advances[J]. Materials, 2021, 14(7): 1630(1-30). [8] UZOMA P C, HU H, KHADEM M, et al. Tribology of 2D nanomaterials: A review[J]. Coatings, 2020, 10(9): 897(1-27). [9] FAZEL S, BOHAYRA M. Ultrahigh carrier mobility, dirac cone and high stretchability in pyrenyl and pyrazinoquinoxaline graphdiyne/graphyne nanosheets confirmed by first-principles[J]. Applied Surface Science, 2021, 557: 149699(1-8). [10] LI H, YU Y, XUE X, et al. Electroic and optical properties of germanene/MoS2 heterobilayers: First principles study[J]. Journal of Molecular Modeling, 2018, 24(12): 333(1-7). [11] WANG K, OUYANG W, CAO W, et al. Robust superlubricity by strain engineering[J]. Nanoscale, 2019, 11(5): 2186-2193. [12] DAI H, ZHANG F, ZHOU Y. Numerical study of three-body diamond abrasive polishing single crystal Si under graphene lubrication by molecular dynamics simulation[J]. Computational Materials Science, 2020, 171: 109214(1-12). [13] DING M, CONG Y, LI R, et al. Effect of surface topography on anisotropic friction of graphene layers[J]. Extreme Mechanics Letters, 2020, 40: 100988(1-11). [14] CHEN X, LI J. Superlubricity of carbon nanostructures[J]. Carbon, 2020, 158: 1-23. [15] LI J, GAO T, LUO J. Superlubricity of graphite induced by multiple transferred graphene nanoflakes[J]. Advanced Science, 2018, 5(3): 1700616(1-8). [16] LEE C, LI Q, KALB W, et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974): 76-80. [17] FENG X, KWON S, PARK J Y, et al. Superlubric sliding of graphene nanoflakes on graphene[J]. ACS Nano, 2013, 7(2): 1718-1724. [18] ZHANG R, CHEN Q, HE Z, et al. In situ friction-induced amorphous carbon or graphene at sliding interfaces: Effect of loads[J]. Applied Surface Science, 2020, 534: 146990(1-9). [19] WEI D L, PAN W, JI Z D, et al. First-principles study of the friction and wear resistance of graphene sheets[J]. Tribology Letters, 2017, 65(2): 53(1-8). [20] WANG J, LI L, YANG W, et al. The flexible lubrication performance of graphene used in diamond interface as a solid lubricant: First-principles calculations[J]. Nanomaterials, 2019, 9(12): 1784(1-11). [21] 张红卫, 刘帅磊, 张苹. 石墨烯层间摩擦的面内局部应变调控[J]. 表面技术, 2020, 3(50): 270-275, 307. [22] 张红卫, 王梦谣, 张田忠. 非公度接触石墨烯层间摩擦对压入深度的依赖性[J]. 固体力学学报, 2020, 41: 239-247. [23] 郭一伯, 庞华, 刘大猛. 横向应力场对原子尺度摩擦的调制[J]. 表面技术, 2020, 49: 187-193, 220. [24] VASIĆ B, ZURUTUZA A, GAJIĆ R. Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene[J]. Carbon, 2016, 102: 304-310. [25] LONG F, YASAEI P, YAO W, et al. Anisotropic friction of wrinkled graphene grown by chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20922-20927. [26] VASIĆ B, RALEVIĆ U, ZOBENICA K C, et al. Low-friction, wear-resistant, and electrically homogeneous multilayer graphene grown by chemical vapor deposition on molybdenum[J]. Applied Surface Science, 2020, 509: 144792(1-9). [27] LIU Y, LI J, YI S, et al. Enhancement of friction performance of fluorinated graphene and molybdenum disulfide coating by microdimple arrays[J]. Carbon, 2020, 167: 122-131. [28] LIU Y, CHEN X, LI J, et al. Enhancement of friction performance enabled by a synergetic effect between graphene oxide and molybdenum disulfide[J]. Carbon, 2019, 154: 266-276. [29] PINGALE A D, BELGAMWAR S U, RATHORE J S. A novel approach for facile synthesis of Cu-Ni/GNPs composites with excellent mechanical and tribological properties[J]. Materials Science and Engineering B: Advanced Functional Solid-State Materials, 2020, 260: 114643(1-12). [30] MUTUK T, TUGˇBA M, MEVLüT G, et al. Prediction of wear properties of graphene-Si3N4 reinforced titanium hybrid composites by artificial neural network[J]. Materials Research Express, 2020, 7(8): 086511(1-11). [31] GUO Y, ZHOU X, LEE K, et al. Recent development in friction of 2D materials: From mechanisms to applications[J]. Nanotechnology, 2021, 32(31): 312002(1-14). [32] SHARMA A K, TIWARI A K, DIXIT A R, et al. Novel uses of alumina/graphene hybrid nanoparticle additives for improved tribological properties of lubricant in turning operation[J]. Tribology International, 2018, 119: 99-111. [33] PAL A, CHATHA S S, SIDHU H S. Experimental investigation on the performance of MQL drilling of AISI 321 stainless steel using nano-graphene enhanced vegetable-oil-based cutting fluid[J]. Tribology International, 2020, 151: 106508(1-10). [34] HARITH H M, WAHIDAH M Z N, MASJUKI H, et al. Synergistic behavior of graphene and ionic liquid as bio-based lubricant additive[J]. Lubricants, 2021, 9(5): 46(1-15). [35] CUI C, NIE T, ZHOU B, et al. Preparation and investigation of graphene-coated lead-free glass frit based on amino dispersant for improved adhesion and lower temperature point[J]. Diamond and Related Materials, 2021, 111: 108213(1-13). [36] 张姗姗, 赵建国, 张进, 等. 褶皱石墨烯球对润滑油摩擦性能的影响[J]. 化工学报, 2018, 69: 4479-4485. [37] JAMES L S, ROBERT C S, PETER V C. Principles governing control of aggregation and dispersion of graphene and graphene oxide in polymer melts[J]. Advanced Materials, 2020, 32(36): 2003213(1-7). [38] GONG K, LOU W, ZHAO G, et al. MoS2 nanoparticles grown on carbon nanomaterials for lubricating oil additives[J]. Friction, 2020, 9(4): 747-757. [39] GUO Y, XU G, YANG X, et al. Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology[J]. Journal of Materials Chemistry, C. Materials for Optical and Electronic Devices, 2018, 6(12): 3004-3015. [40] ZHANG H, YAO J, ZHANG S F, et al. Carboxylized graphene oxide nanosheet for shale plugging at high temperature[J]. Applied Surface Science, 2021, 558: 149901(1-6). [41] CHEN W, LV G, SHEN J, et al. The preparation and application of polymer/graphene nanocomposites[J]. Emerging Materials Research, 2020, 9: 1-17. [42] REN G, ZHANG Z, ZHU X, et al. Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 157-164. [43] SAURÍN N, SANES J, BERMÚDEZ M D. Effect of graphene and ionic liquid additives on the tribological performance of epoxy resin[J]. Tribology Letters, 2014, 56(1): 133-142. [44] SAMANTA S, SINGH S, SAHOO R R. Covalently grafting of self-assembled functionalized graphene oxide multilayer films on Si substrate for solid film lubrication[J]. Thin Solid Films, 2019, 683: 16-26. [45] OU J F, LIU L, WANG J Q, et al. Fabrication and tribological investigation of a novel hydrophobic polydopamine/graphene oxide multilayer film[J]. Tribology Letters, 2012, 48(3): 407-415. [46] MI Y J, WANG Z F, LIU X H, et al. A simple and feasible in-situ reduction route for preparation of graphene lubricant films applied to a variety of substrates[J]. Journal of Materials Chemistry, 2012, 22(16): 8036-8042. [47] LIU S, OU J F, LI Z P, et al. Layer-by-layer assembly and tribological property of multilayer ultrathin films constructed by modified graphene sheets and polyethyleneimine[J]. Applied Surface Science, 2012, 258(7): 2231-2236. [48] JIA T, SHEN S, XIAO L, et al. Constructing multilayered membranes with layer-by-layer self-assembly technique based on graphene oxide for anhydrous proton exchange membranes[J]. European Polymer Journal, 2020, 122: 109362(1-9). [49] ZHANG B, LEE J, KIM M, et al. Direct patterning and spontane-ous self-assembly of graphene oxide via electrohydrodynamic jet printing for energy storage and sensing[J]. Micromachines, 2020, 11(13): 1-13. [50] HEO J, CHOI M, HONG J. Facile surface modification of polyethylene film via spray-assisted layer-by-layer self-assembly of graphene oxide for oxygen barrier properties[J]. Scientific Reports, 2019, 9(1): 2754(1-7). [51] TRIANTOU M I, STATHI K I, TARANTILI P A. Thermal, mechanical, and dielectric properties of injection molded graphene nanocomposites based on ABS/PC and ABS/PP blends[J]. Polymer Composites, 2019, 40(S2): 25112(1-11). [52] BEHERA K, YADAV M, CHIU F C, et al. Graphene nanoplatelet-reinforced poly(vinylidene fluoride)/high density polyethylene blend-based nanocomposites with enhanced thermal and electrical properties[J]. Nanomaterials, 2019, 9(3): 361(1-19). [53] GKOUZOU A, JANSSEN G C A M, SPENGEN W M V. Dosed carbon precipitation and graphene layer number control on nickel micro-electromechanical systems surfaces[J]. Sensors and Actuators: A. Physical, 2020, 303: 111837(1-11). [54] 胡超, 徐静, 余家欣, 等. 氧化石墨烯/聚酰亚胺复合材料摩擦学行为及机理研究[J]. 摩擦学学报, 2020, 40: 12-20. [55] CHEN C, ZHANG Z, ZHAO X, et al. Polyoxymethylene/graphene oxide-perfluoropolyether nano-composite with ultra-low friction coefficient fabricated by formation of superior interfacial tribofilm[J]. Composites Part A, 2020, 132: 105856(1-13). [56] SHI Y, ZHOU S, ZOU H, et al. In situ micro-fibrillization and post annealing to significantly improve the tribological properties of polyphenylene sulfide/polyamide 66/polytetrafluoroethylene composites[J]. Composites Part B: Engineering, 2021, 216: 108841(1-12). [57] TATAR J, TORRENCE C E, MECHOLSKY J J, et al. Effects of silane surface functionalization on interfacial fracture energy and durability of adhesive bond between cement paste and epoxy[J]. International Journal of Adhesion and Adhesives, 2018, 84: 132-142. [58] XIE Y, ZHANG J, ZHOU T. Large-area mechanical interlocking via nanopores: Ultra-high-strength direct bonding of polymer and metal materials[J]. Applied Surface Science, 2019, 492: 558-570. [59] FERIAL G, GHADIR R. Synthesis of different types of carbon nanohybrid and their effects in polymer composites[J]. Springer Netherlands, 2018, 44(3): 1905-1918. [60] 李迎春, 程蓓, 邱明, 等. 不同石墨烯添加量下MoS2基复合涂层的摩擦磨损及耐腐蚀性能[J]. 中国机械工程, 2020, 31: 2437-2444. [61] UPADHYAY R K, KUMAR A. Epoxy-graphene-MoS2 composites with improved tribological behavior under dry sliding contact[J]. Tribology International, 2019, 130: 106-118. [62] MENG F, HAN H, MA Z, et al. Effects of aviation lubrication on tribological performances of graphene/MoS2 composite coating[J]. Journal of Tribology, 2021, 143(3): 031401(1-12). [63] SUN J, HUANG Z, ZHAO J, et al. Nano-laminated graphene-carbide for green machining[J]. Journal of Cleaner Production, 2021, 293: 126158(1-12). |