复合材料科学与工程 ›› 2023, Vol. 0 ›› Issue (2): 24-33.DOI: 10.19936/j.cnki.2096-8000.20230228.003
李泳璋, 吴迪*
收稿日期:
2022-01-17
出版日期:
2023-02-28
发布日期:
2023-04-28
通讯作者:
吴迪(1980—),男,讲师,工学博士,主要从事岩土体稳定性及结构抗震加固方面的研究,ywzq106107@163.com。
作者简介:
李泳璋(1990—),男,主要从事结构构件加固后性能方面的研究。
基金资助:
LI Yongzhang, WU Di*
Received:
2022-01-17
Online:
2023-02-28
Published:
2023-04-28
摘要: 为进一步研究纤维网格增强砂浆(Textile Reinforced Mortar,TRM)加固对钢筋混凝土(Reinforced Concrete,RC)双向板抗弯承载力的影响,通过四点抗弯加载方法对三块RC双向板进行试验,研究不同加固方式对TRM加固RC双向板抗弯承载力及弯曲变形能力等的影响。结果表明:采用TRM对RC双向板进行加固可有效提升其承载能力及弯曲变形能力,与未加固试验板相比,两块加固板的抗弯承载力分别提高了54.2%和43.8%,能量吸收值分别提高了75.5%和49.1%;与未加固试验板相比,采用界面剂与未采用界面剂对试验板进行界面处理,其裂后刚度分别增加了145.2%和83.4%,说明采用界面剂的加固方式能够有效提升加固层与旧结构之间的黏结力,阻止新旧界面裂缝的萌生与发展。同时本文基于塑性铰线理论,提出了TRM加固RC双向板的承载力简易计算公式,同试验值相比吻合度较好,为工程应用提供了较为实用的设计方法。
中图分类号:
李泳璋, 吴迪. 纤维网格增强砂浆加固RC双向板试验及承载力计算模型研究[J]. 复合材料科学与工程, 2023, 0(2): 24-33.
LI Yongzhang, WU Di. Research on test and bearing capacity calculation model of two-way RC slabs strengthened with textile reinforced mortar[J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(2): 24-33.
[1] SCHEERER S, SCHLADITZ F, CURBACH M. Textile reinforced concrete-from the idea to a high performance material[C]//BRAMESHUBER W, editor. In Proceedings of the FERRO-11 & 3rd ICTRC(PRO 98). Bagneux, France: S. A. R. L. Rilem Publication, 2015: 15-33. [2] AL-SALLOUM Y A, SIDDIQUI N A, ELSANADEDY H M, et al. Textile-reinforced mortar versus FRP as strengthening material for seismically deficient RC beam-column joints[J]. Journal of Composites for Construction, 2011, 15(6): 920-933. [3] PELED A. Confinement of damaged and nondamaged structural concrete with FRP and TRC sleeves[J]. Journal of Composites for Construction, 2007, 11(5): 514-522. [4] REGINE O, UWE H, MANFRED C. A new approach for evaluating bond capacity of TRC strengthening[J]. Cement and Concrete Composites, 2006, 28(7): 589-597. [5] SCHEERER S, ZOBEL R, MÜLLER E, et al. Flexural strengthening of RC structures with TRC-experimental observations, design approach and application[J]. Applied Sciences, 2019, 9(7): 1322. [6] 尹世平. TRC基本力学性能及其增强钢筋混凝土梁受弯性能研究[D]. 大连: 大连理工大学, 2010. [7] 徐世烺, 尹世平, 蔡新华. 纤维编织网增强混凝土加固钢筋混凝土受弯梁的抗裂性能研究[J]. 水利学报, 2010, 41(7): 833-840. [8] 徐世烺, 尹世平, 蔡新华. 纤维编织网增强混凝土加固钢筋混凝土梁受弯性能研究[J]. 土木工程学报, 2011, 44(4): 23-34. [9] SCHLADITZ F, FRENZEL M, EHLIG D, et al. Bending load capacity of reinforced concrete slabs strengthened with textile reinforced concrete[J]. Engineering Structures, 2012, 40: 317-326. [10] TRIANTAFILLOU T, PAPANICOLAOU C G, PAPANTONIOU I, et al. Strengthening of two-way slabs with textile-reinforced mortars (TRM)[C]//CURBACH M, JESSE F, editors. Proceedings of 4th Colloquium on Textile Reinforced Structures (CTRS4).Germany: Technische Universitat Dresden, 2009: 409-420. [11] KOUTAS L N, BOURNAS D A. Flexural Strengthening of two-way RC slabs with textile-reinforced mortar: Experimental investigation and design equations[J]. Journal of Composites for Construction, 2017, 21(1): 4016065. [12] AMBRISI A D, FOCACCI F. Flexural strengthening of RC beams with cement-based composites[J]. Journal of Composites for Construction, 2011, 15(5): 707-720. [13] KOUTAS L N, TETTA Z, BOURNAS D A, et al. Strengthening of concrete structures with textile reinforced mortars: State-of-the-art review[J]. Journal of Composites for Construction, 2019, 23(1): 3118001. [14] RAOOF S M, KOUTAS L N, BOURNAS D A. Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams[J]. Construction and Building Materials, 2017, 151: 279-291. [15] EBEAD U. Inexpensive strengthening technique for partially loaded reinforced concrete beams: Experimental study[J]. Journal of Materials in Civil Engineering, 2015, 27(10): 04015002.1-04015002.11. [16] RÜSCH H. Researches toward a general flexural theory for structural concrete[J]. Journal of the American Concrete Institute, 1960, 57(1): 1-28. [17] CARLONI C, BOURNAS D A, CAROZZI F G, et al. Fiber reinforced composites with cementitious (inorganic) matrix[M]. Dordrecht: Springer Netherlands, 2016: 349-392. [18] EBEAD U, SHRESTHA K C, AFZAL M S, et al. Effectiveness of fabric-reinforced cementitious matrix in strengthening reinforced concrete beams[J]. Journal of Composites for Construction, 2016: 4016084. [19] BURGESS I. Yield-line plasticity and tensile membrane action in lightly-reinforced rectangular concrete slabs[J]. Engineering Structures, 2017, 138: 195-214. |
[1] | 王孟, 刘程, 张玉, 贾航, 乔越, 蹇锡高. 成型温度对CF/PPEK复合材料的缺陷和力学性能影响[J]. 复合材料科学与工程, 2024, 0(3): 5-12. |
[2] | 张劢, 郑颖骁, 胡可军, 韩文钦, 段刘阳, 石庆贺. 不同铺层结构GLARE层板弯曲失效机理的声发射研究[J]. 复合材料科学与工程, 2024, 0(3): 13-19. |
[3] | 史洪源, 任文坚, 党杰, 周鹏. 玻璃纤维增强复合材料超声检测声场的CIVA仿真与试验研究[J]. 复合材料科学与工程, 2024, 0(3): 20-24. |
[4] | 杨思鑫, 曹忠亮, 顾付伟. 双三角点阵夹芯结构低速冲击下的动态响应与失效机制[J]. 复合材料科学与工程, 2024, 0(3): 25-34. |
[5] | 张斌, 赵晶, 王世杰. Kagome点阵结构参数对其压缩特性的影响及轻质化设计[J]. 复合材料科学与工程, 2024, 0(3): 35-42. |
[6] | 王宇轩, 曹东风, 胡海晓, 李书欣. 计及层内和层间的L形层合板失效的数值研究[J]. 复合材料科学与工程, 2024, 0(3): 43-53. |
[7] | 耿健, 董九志, 梅宝龙, 蒋秀明. 三维四向碳/碳复合材料力学性能预测与试验验证[J]. 复合材料科学与工程, 2024, 0(3): 54-60. |
[8] | 高坤, 张兆恒, 邢亚娟, 左小彪, 王博尧, 赵泽华. 含磷POSS阻燃乙烯基酯树脂性能研究[J]. 复合材料科学与工程, 2024, 0(3): 61-64. |
[9] | 郑子君, 乔英, 邵家儒. 基于机器视觉的短纤维复合材料的取向度提取方法[J]. 复合材料科学与工程, 2024, 0(3): 65-72. |
[10] | 许晓婷, 郝恩全, 邵慧奇, 邵光伟, 毕思伊, 陈南梁, 蒋金华. 三维大隔距机织间隔织物柔性复合材料的服役性能研究[J]. 复合材料科学与工程, 2024, 0(3): 73-78. |
[11] | 苏桐, 胡果馨, 刘振. 全碳纤维复合材料太阳能无人机机翼结构优化设计[J]. 复合材料科学与工程, 2024, 0(3): 79-83. |
[12] | 伍强, 赵凯, 刘鹏飞, 张涛涛, 朱德勇. Z形纤维增强复合材料层压板固化变形分析[J]. 复合材料科学与工程, 2024, 0(3): 84-90. |
[13] | 宋贵宾, 黄光启, 杨胜春. 复合材料层压板胶接挖补修理分析方法及影响因素研究[J]. 复合材料科学与工程, 2024, 0(3): 91-96. |
[14] | 王耀, 邵丹丹, 雷炳育. 共沉淀析出-热压技术制备高储能性能复合材料薄膜[J]. 复合材料科学与工程, 2024, 0(3): 97-102. |
[15] | 张仲香, 刘宝锋, 方晨鑫, 陈文光, 顾育慧, 李军向. 沙戈荒环境下风电叶片中复合材料耐高温性能研究[J]. 复合材料科学与工程, 2024, 0(3): 103-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||